dc.contributor.author |
Aslam Noor, M |
en |
dc.contributor.author |
Rassias, TM |
en |
dc.date.accessioned |
2014-03-01T01:15:05Z |
|
dc.date.available |
2014-03-01T01:15:05Z |
|
dc.date.issued |
1999 |
en |
dc.identifier.issn |
0022-247X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/13332 |
|
dc.subject |
Convergence criteria |
en |
dc.subject |
Projection method |
en |
dc.subject |
Splitting method |
en |
dc.subject |
Variational inequalities |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.title |
Projection Methods for Monotone Variational Inequalities |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1006/jmaa.1999.6422 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1006/jmaa.1999.6422 |
en |
heal.language |
English |
en |
heal.publicationDate |
1999 |
en |
heal.abstract |
In this paper, we study some new iterative methods for solving monotone variational inequalities by using the updating technique of the solution. It is shown that the convergence of the new methods requires the monotonicity and pseudomonotonicity of the operator. The new methods are very versatile and are easy to implement. The techniques include the splitting and extragradient methods as special cases, (C) 1999 Academic Press. |
en |
heal.publisher |
ACADEMIC PRESS INC |
en |
heal.journalName |
Journal of Mathematical Analysis and Applications |
en |
dc.identifier.doi |
10.1006/jmaa.1999.6422 |
en |
dc.identifier.isi |
ISI:000082533700001 |
en |
dc.identifier.volume |
237 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
405 |
en |
dc.identifier.epage |
412 |
en |