dc.contributor.author |
Brock, LM |
en |
dc.contributor.author |
Georgiadis, HG |
en |
dc.date.accessioned |
2014-03-01T01:15:09Z |
|
dc.date.available |
2014-03-01T01:15:09Z |
|
dc.date.issued |
1999 |
en |
dc.identifier.issn |
0020-7683 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/13361 |
|
dc.subject |
Integral Transforms |
en |
dc.subject |
Source Term |
en |
dc.subject |
Steady State |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Dislocations (crystals) |
en |
dc.subject.other |
Perturbation techniques |
en |
dc.subject.other |
Screw dislocations |
en |
dc.subject.other |
Piezoelectric materials |
en |
dc.title |
Response of welded thermoelastic solids to the rapid motion of thermomechanical sources parallel to the interface |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0020-7683(98)00049-3 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0020-7683(98)00049-3 |
en |
heal.language |
English |
en |
heal.publicationDate |
1999 |
en |
heal.abstract |
The analysis of rapidly-moving thermomechanical surface sources is extended to the study of buried thermomechanical sources that move parallel to the interface of two welded dissimilar thermoelastic half-spaces at a constant subcritical speed. The sources are manifest as body force line loads in the coupled equations of thermoelasticity, and a 2-D steady-state situation is treated. Exact integral transform solutions are obtained, and expressions for the displacements and temperature changes are generated by analytical inversion of robust asymptotic versions of the transforms. These expressions show that thermoelastic coupling effects increase with source speed, and that the thermal source is always manifest in combination with a component of the mechanical source, i.e. an effective thermal source term exists. The expressions also exhibit component functions that are in effect hybrids of functions that are seen in purely thermal and isothermal elastic solutions. The critical source speed is defined as the minimum of the two asymptotic thermoelastic Rayleigh speeds in the half-spaces and, when it exists, the asymptotic thermoelastic Stoneley speed. Exact expressions for these speeds are given, and used to present some typical values. (C) 1998 Elsevier Science Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
International Journal of Solids and Structures |
en |
dc.identifier.doi |
10.1016/S0020-7683(98)00049-3 |
en |
dc.identifier.isi |
ISI:000078484800005 |
en |
dc.identifier.volume |
36 |
en |
dc.identifier.issue |
10 |
en |
dc.identifier.spage |
1503 |
en |
dc.identifier.epage |
1521 |
en |