dc.contributor.author |
Anousaki, GC |
en |
dc.contributor.author |
Kyriakopoulos, KJ |
en |
dc.date.accessioned |
2014-03-01T01:15:12Z |
|
dc.date.available |
2014-03-01T01:15:12Z |
|
dc.date.issued |
1999 |
en |
dc.identifier.issn |
1070-9932 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/13374 |
|
dc.subject |
mobile robots |
en |
dc.subject |
navigation |
en |
dc.subject |
ultrasonic |
en |
dc.subject |
localization |
en |
dc.subject |
map building |
en |
dc.subject.classification |
Automation & Control Systems |
en |
dc.subject.classification |
Robotics |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Charge coupled devices |
en |
dc.subject.other |
Computer vision |
en |
dc.subject.other |
Feature extraction |
en |
dc.subject.other |
Image segmentation |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Motion control |
en |
dc.subject.other |
Motion planning |
en |
dc.subject.other |
Position control |
en |
dc.subject.other |
Probability distributions |
en |
dc.subject.other |
Robotics |
en |
dc.subject.other |
Sensor data fusion |
en |
dc.subject.other |
Histogramic in-motion mapping (HIMM) |
en |
dc.subject.other |
Map-building algorithms |
en |
dc.subject.other |
Odometric sensors |
en |
dc.subject.other |
Mobile robots |
en |
dc.title |
Simultaneous localization and map building for mobile robot navigation |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/100.793699 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/100.793699 |
en |
heal.language |
English |
en |
heal.publicationDate |
1999 |
en |
heal.abstract |
A reliable scheme that deals with the map-building and the localization issues simultaneously is presented. The world-model estimate is fed to the localization algorithm, which in turn provides a corrected position and orientation estimate that is subsequently fed to the map-building algorithm to provide an updated world model. The perceived local world model along with dead-reckoning and ultrasonic sensor data are combined using an extended Kalman filter in a localization scheme to estimate the current position and orientation of the mobile robot. Implementation issues and experimental results from the experience with a Nomad 150 mobile robot in a real world indoor environment are presented. |
en |
heal.publisher |
IEEE, Piscataway, NJ, United States |
en |
heal.journalName |
IEEE Robotics and Automation Magazine |
en |
dc.identifier.doi |
10.1109/100.793699 |
en |
dc.identifier.isi |
ISI:000082813000008 |
en |
dc.identifier.volume |
6 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
42 |
en |
dc.identifier.epage |
53 |
en |