dc.contributor.author |
Tzamtzi, MP |
en |
dc.contributor.author |
Tzafestas, SG |
en |
dc.date.accessioned |
2014-03-01T01:15:13Z |
|
dc.date.available |
2014-03-01T01:15:13Z |
|
dc.date.issued |
1999 |
en |
dc.identifier.issn |
1350-2379 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/13384 |
|
dc.subject.classification |
Automation & Control Systems |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.classification |
Instruments & Instrumentation |
en |
dc.subject.other |
Closed loop control systems |
en |
dc.subject.other |
Feedback control |
en |
dc.subject.other |
Linearization |
en |
dc.subject.other |
Probability |
en |
dc.subject.other |
Robustness (control systems) |
en |
dc.subject.other |
System stability |
en |
dc.subject.other |
Theorem proving |
en |
dc.subject.other |
Uncertain systems |
en |
dc.subject.other |
Feedback linearized systems |
en |
dc.subject.other |
Input unmodelled dynamics |
en |
dc.subject.other |
Input-to-output stability (IOS) |
en |
dc.subject.other |
Input-to-state stability (ISS) |
en |
dc.subject.other |
Nonlinear small gain theorem |
en |
dc.subject.other |
Linear control systems |
en |
dc.title |
Stability robustness of feedback linearisable systems with input unmodelled dynamics |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1049/ip-cta:19990375 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1049/ip-cta:19990375 |
en |
heal.language |
English |
en |
heal.publicationDate |
1999 |
en |
heal.abstract |
The stability robustness of a feedback linearisable system subject to unstructured uncertainty is studied, with respect to the concepts of local input-to-state stability (ISS), local input-to-output stability (IOS) and smallsignal L2-stability. A nonlinear small-gain theorem for feedback interconnected systems that are characterised by both local ISS and IOS is established. This theorem is used to derive sufficient conditions for robust local ISS and IOS of the closed-loop system that is produced by the application of feedback linearising control to a nonlinear feedback linearisable system with unmodelled dynamics. Moreover, sufficient conditions for robust small-signal L2-stability are derived by employing both the aforementioned nonlinear small-gain theorem and the well known small-gain theorem for L2-stability. The conditions proposed are easily verifiable. A nontrivial illustrative example is included. © IEE, 1999. |
en |
heal.publisher |
IEE-INST ELEC ENG |
en |
heal.journalName |
IEE Proceedings: Control Theory and Applications |
en |
dc.identifier.doi |
10.1049/ip-cta:19990375 |
en |
dc.identifier.isi |
ISI:000079914800011 |
en |
dc.identifier.volume |
146 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
77 |
en |
dc.identifier.epage |
83 |
en |