HEAL DSpace

The inverse scattering problem in three-dimensional elasticity

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Gintides, D en
dc.date.accessioned 2014-03-01T01:15:19Z
dc.date.available 2014-03-01T01:15:19Z
dc.date.issued 1999 en
dc.identifier.issn 0044-2267 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/13432
dc.subject Inverse Scattering Problem en
dc.subject Three Dimensional en
dc.subject.classification Mathematics, Applied en
dc.subject.classification Mechanics en
dc.subject.other HARMONIC ACOUSTIC-WAVES en
dc.title The inverse scattering problem in three-dimensional elasticity en
heal.type journalArticle en
heal.identifier.primary 10.1002/(SICI)1521-4001(199910)79:10<675::AID-ZAMM675>3.0.CO;2-0 en
heal.identifier.secondary http://dx.doi.org/10.1002/(SICI)1521-4001(199910)79:10<675::AID-ZAMM675>3.0.CO;2-0 en
heal.language English en
heal.publicationDate 1999 en
heal.abstract In this paper the inverse rigid scatterer problem in, linear elasticity is considered. A uniquely solvable integral equation which describes the scattering process is used to compute the elastic scattering amplitudes. A classical regularization procedure is proposed in order to reduce the integral equation to a Fredholm type equation with compact integral operators. A continuity dependence of the far-field amplitudes upon the shape of the scatterer is proved to stabilize the inverse problem and an optimization scheme is proposed to derive quasi solutions incorporating a priori data about the shape of the scatterer. en
heal.publisher WILEY-V C H VERLAG GMBH en
heal.journalName ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik en
dc.identifier.doi 10.1002/(SICI)1521-4001(199910)79:10<675::AID-ZAMM675>3.0.CO;2-0 en
dc.identifier.isi ISI:000083064800002 en
dc.identifier.volume 79 en
dc.identifier.issue 10 en
dc.identifier.spage 675 en
dc.identifier.epage 684 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής