dc.contributor.author |
Gintides, D |
en |
dc.date.accessioned |
2014-03-01T01:15:19Z |
|
dc.date.available |
2014-03-01T01:15:19Z |
|
dc.date.issued |
1999 |
en |
dc.identifier.issn |
0044-2267 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/13432 |
|
dc.subject |
Inverse Scattering Problem |
en |
dc.subject |
Three Dimensional |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
HARMONIC ACOUSTIC-WAVES |
en |
dc.title |
The inverse scattering problem in three-dimensional elasticity |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1002/(SICI)1521-4001(199910)79:10<675::AID-ZAMM675>3.0.CO;2-0 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1002/(SICI)1521-4001(199910)79:10<675::AID-ZAMM675>3.0.CO;2-0 |
en |
heal.language |
English |
en |
heal.publicationDate |
1999 |
en |
heal.abstract |
In this paper the inverse rigid scatterer problem in, linear elasticity is considered. A uniquely solvable integral equation which describes the scattering process is used to compute the elastic scattering amplitudes. A classical regularization procedure is proposed in order to reduce the integral equation to a Fredholm type equation with compact integral operators. A continuity dependence of the far-field amplitudes upon the shape of the scatterer is proved to stabilize the inverse problem and an optimization scheme is proposed to derive quasi solutions incorporating a priori data about the shape of the scatterer. |
en |
heal.publisher |
WILEY-V C H VERLAG GMBH |
en |
heal.journalName |
ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik |
en |
dc.identifier.doi |
10.1002/(SICI)1521-4001(199910)79:10<675::AID-ZAMM675>3.0.CO;2-0 |
en |
dc.identifier.isi |
ISI:000083064800002 |
en |
dc.identifier.volume |
79 |
en |
dc.identifier.issue |
10 |
en |
dc.identifier.spage |
675 |
en |
dc.identifier.epage |
684 |
en |