HEAL DSpace

A generalized mathematical framework for stochastic simulation and forecast of hydrologic time series

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Koutsoyiannis, D en
dc.date.accessioned 2014-03-01T01:15:25Z
dc.date.available 2014-03-01T01:15:25Z
dc.date.issued 2000 en
dc.identifier.issn 0043-1397 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/13485
dc.subject Stochastic Simulation en
dc.subject Time Series en
dc.subject.classification Environmental Sciences en
dc.subject.classification Limnology en
dc.subject.classification Water Resources en
dc.subject.other DISAGGREGATION en
dc.title A generalized mathematical framework for stochastic simulation and forecast of hydrologic time series en
heal.type journalArticle en
heal.identifier.primary 10.1029/2000WR900044 en
heal.identifier.secondary http://dx.doi.org/10.1029/2000WR900044 en
heal.language English en
heal.publicationDate 2000 en
heal.abstract A generalized framework for single-variate and multivariate simulation and forecasting problems in stochastic hydrology is proposed. It is appropriate for short-term or long-term memory processes and preserves the Hurst coefficient even in multivariate processes with a different Hurst coefficient in each location. Simultaneously, it explicitly preserves the coefficients of skewness of the processes. The proposed framework incorporates short-memory (autoregressive moving average) and long-memory (fractional Gaussian noise) models, considering them as special instances of a parametrically defined generalized autocovariance function, more comprehensive than those used in these classes of models. The generalized autocovariance function is then implemented in a generalized moving average generating scheme that yields a new time-symmetric (backward-forward) representation, whose advantages are studied. Fast algorithms for computation of internal parameters of the generating scheme are developed, appropriate for problems including even thousands of such parameters. The proposed generating scheme is also adapted through a generalized methodology to perform in forecast mode, in addition to simulation mode. Finally, a specific form of the model fur problems where the autocorrelation function can be defined only for a certain finite number of lags is also studied. Several illustrations are included to clarify the features and the performance of the components of the proposed framework. en
heal.publisher AMER GEOPHYSICAL UNION en
heal.journalName WATER RESOURCES RESEARCH en
dc.identifier.doi 10.1029/2000WR900044 en
dc.identifier.isi ISI:000087226800014 en
dc.identifier.volume 36 en
dc.identifier.issue 6 en
dc.identifier.spage 1519 en
dc.identifier.epage 1533 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής