dc.contributor.author |
Prastaro, A |
en |
dc.contributor.author |
Rassias, TM |
en |
dc.date.accessioned |
2014-03-01T01:15:25Z |
|
dc.date.available |
2014-03-01T01:15:25Z |
|
dc.date.issued |
2000 |
en |
dc.identifier.issn |
0377-0427 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/13487 |
|
dc.subject |
geometry of partial differential equations |
en |
dc.subject |
singular solutions |
en |
dc.subject |
(co)bordism in PDEs |
en |
dc.subject |
integral manifolds and Cartan forms |
en |
dc.subject |
tunnel effects in PDEs |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
VARIABLES |
en |
dc.subject.other |
PRODUCTS |
en |
dc.subject.other |
SUMS |
en |
dc.title |
A geometric approach of the generalized d'Alembert equation |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0377-0427(99)00247-2 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0377-0427(99)00247-2 |
en |
heal.language |
English |
en |
heal.publicationDate |
2000 |
en |
heal.abstract |
By using a geometric approach we prove that the set of solutions of the generalized d'Alembert equation partial derivative(n) log f/partial derivative x(1) ... partial derivative xn = 0, considered in domain of the (x(1), ... ,x(n))-space R-n, is larger than the set of the functions that can be represented in the form as f(x(1), ... ,x(n)) = f(1)(x(2), ... ,x(n)) ... f(n)(x(1), ... ,x(n-1)). (C) 2000 Elsevier Science B.V. All rights reserved. MSC. 58698; 58618. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS |
en |
dc.identifier.doi |
10.1016/S0377-0427(99)00247-2 |
en |
dc.identifier.isi |
ISI:000084633300010 |
en |
dc.identifier.volume |
113 |
en |
dc.identifier.issue |
1-2 |
en |
dc.identifier.spage |
93 |
en |
dc.identifier.epage |
122 |
en |