A geometric approach of the generalized d'Alembert equation

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Prastaro, A en
dc.contributor.author Rassias, TM en
dc.date.accessioned 2014-03-01T01:15:25Z
dc.date.available 2014-03-01T01:15:25Z
dc.date.issued 2000 en
dc.identifier.issn 0377-0427 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/13487
dc.subject geometry of partial differential equations en
dc.subject singular solutions en
dc.subject (co)bordism in PDEs en
dc.subject integral manifolds and Cartan forms en
dc.subject tunnel effects in PDEs en
dc.subject.classification Mathematics, Applied en
dc.subject.other VARIABLES en
dc.subject.other PRODUCTS en
dc.subject.other SUMS en
dc.title A geometric approach of the generalized d'Alembert equation en
heal.type journalArticle en
heal.identifier.primary 10.1016/S0377-0427(99)00247-2 en
heal.identifier.secondary http://dx.doi.org/10.1016/S0377-0427(99)00247-2 en
heal.language English en
heal.publicationDate 2000 en
heal.abstract By using a geometric approach we prove that the set of solutions of the generalized d'Alembert equation partial derivative(n) log f/partial derivative x(1) ... partial derivative xn = 0, considered in domain of the (x(1), ... ,x(n))-space R-n, is larger than the set of the functions that can be represented in the form as f(x(1), ... ,x(n)) = f(1)(x(2), ... ,x(n)) ... f(n)(x(1), ... ,x(n-1)). (C) 2000 Elsevier Science B.V. All rights reserved. MSC. 58698; 58618. en
heal.publisher ELSEVIER SCIENCE BV en
dc.identifier.doi 10.1016/S0377-0427(99)00247-2 en
dc.identifier.isi ISI:000084633300010 en
dc.identifier.volume 113 en
dc.identifier.issue 1-2 en
dc.identifier.spage 93 en
dc.identifier.epage 122 en

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record