dc.contributor.author |
Prastaro, A |
en |
dc.contributor.author |
Rassias, TM |
en |
dc.date.accessioned |
2014-03-01T01:15:25Z |
|
dc.date.available |
2014-03-01T01:15:25Z |
|
dc.date.issued |
2000 |
en |
dc.identifier.issn |
0764-4442 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/13488 |
|
dc.subject |
Geometric Approach |
en |
dc.subject |
Global Solution |
en |
dc.subject.classification |
Mathematics |
en |
dc.title |
A geometric approach to a noncommutative generalized d'Alembert equation |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0764-4442(00)00238-X |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0764-4442(00)00238-X |
en |
heal.language |
English |
en |
heal.publicationDate |
2000 |
en |
heal.abstract |
A new m-d' Alembert equation, m greater than or equal to 2, is introduced in the category of quantum manifolds [5,6,8], that extends the commutative generalized d'Alembert equation just considered in [9]. For such a new equation we give theorems of existence of local and global solutions. (C) 2000 Academie des sciences/Editions scientifiques et medicales Elsevier SAS. |
en |
heal.publisher |
EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER |
en |
heal.journalName |
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE |
en |
dc.identifier.doi |
10.1016/S0764-4442(00)00238-X |
en |
dc.identifier.isi |
ISI:000087457300004 |
en |
dc.identifier.volume |
330 |
en |
dc.identifier.issue |
7 |
en |
dc.identifier.spage |
545 |
en |
dc.identifier.epage |
550 |
en |