dc.contributor.author |
Kostogloudis, GC |
en |
dc.contributor.author |
Ftikos, C |
en |
dc.contributor.author |
Ahmad-Khanlou, A |
en |
dc.contributor.author |
Naoumidis, A |
en |
dc.contributor.author |
Stover, D |
en |
dc.date.accessioned |
2014-03-01T01:15:30Z |
|
dc.date.available |
2014-03-01T01:15:30Z |
|
dc.date.issued |
2000 |
en |
dc.identifier.issn |
0167-2738 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/13547 |
|
dc.subject |
SOFC |
en |
dc.subject |
lanthanum gallate solid electrolyte |
en |
dc.subject |
cathode/electrolyte chemical compatibility |
en |
dc.subject |
SEM/EDX |
en |
dc.subject.classification |
Chemistry, Physical |
en |
dc.subject.classification |
Physics, Condensed Matter |
en |
dc.subject.other |
FUEL-CELLS |
en |
dc.subject.other |
LAGAO3 |
en |
dc.subject.other |
MAGNESIUM |
en |
dc.subject.other |
STRONTIUM |
en |
dc.subject.other |
CONDUCTOR |
en |
dc.title |
Chemical compatibility of alternative perovskite oxide SOFC cathodes with doped lanthanum gallate solid electrolyte |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0167-2738(00)00721-9 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0167-2738(00)00721-9 |
en |
heal.language |
English |
en |
heal.publicationDate |
2000 |
en |
heal.abstract |
This paper reports on the investigations of the chemical compatibility between SOFC cathode materials with compositions Pr0.8Sr0.2Co0.2Mn0.8O3-delta, Pr0.8Sr0.2Co0.2Fe0.8O3-delta, Pr0.8Sr0.2Co0.3Mn0.7O3-delta and Pr0.75Sr0.2Co0.2Mn0.8O3-delta and the electrolyte materials with compositions La0.8Sr0.2Ga0.9Mg0.1O3-delta, and La0.9Sr0.1Ga0.8Mg0.2O3-delta. The lanthanum gallate electrolyte with 20 mol.% Sr contained two additional phases, namely, LaSrGa3O7 and LaSrGaO4, while that with 10 mol.% Sr was formed in nearly single phase. Two types of experiments were performed: (a) reactivity experiments of powder mixtures and (b) diffusion experiments in cathode/electrolyte double-layer pellets. No reaction products were detected by XRD. High Co diffusion into the electrolyte was identified with SEM/EDX in all diffusion experiments examined. The transition metals diffuse in the order Mn < Fe < Co. La, Pr and Ga show a smaller tendency for diffusion. The diffusion of transition metal cations into the electrolyte La0.8Sr0.2Ga0.9Mg0.1O3-delta caused the destabilisation and disappearance of the second phases in the interdiffusion zone. In the case of the A-site deficient cathode, the formation of LaSrGa3O7 second phase was identified on the electrolyte side, near the interdiffusion zone. (C) 2000 Elsevier Science B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
SOLID STATE IONICS |
en |
dc.identifier.doi |
10.1016/S0167-2738(00)00721-9 |
en |
dc.identifier.isi |
ISI:000165283100014 |
en |
dc.identifier.volume |
134 |
en |
dc.identifier.issue |
1-2 |
en |
dc.identifier.spage |
127 |
en |
dc.identifier.epage |
138 |
en |