HEAL DSpace

Classification of aged wine distillates using fuzzy and neural network systems

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Raptis, CG en
dc.contributor.author Siettos, CI en
dc.contributor.author Kiranoudis, CT en
dc.contributor.author Bafas, GV en
dc.date.accessioned 2014-03-01T01:15:30Z
dc.date.available 2014-03-01T01:15:30Z
dc.date.issued 2000 en
dc.identifier.issn 0260-8774 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/13551
dc.subject Back Propagation en
dc.subject Classification System en
dc.subject Fuzzy Classifier en
dc.subject Fuzzy Logic en
dc.subject Mathematical Model en
dc.subject Multi Criteria Decision Making en
dc.subject Neural System en
dc.subject Expert System en
dc.subject Neural Network en
dc.subject.classification Engineering, Chemical en
dc.subject.classification Food Science & Technology en
dc.subject.other MODEL en
dc.title Classification of aged wine distillates using fuzzy and neural network systems en
heal.type journalArticle en
heal.identifier.primary 10.1016/S0260-8774(00)00087-X en
heal.identifier.secondary http://dx.doi.org/10.1016/S0260-8774(00)00087-X en
heal.language English en
heal.publicationDate 2000 en
heal.abstract The classification of aged wine distillates is a non-linear, multi-criteria decision-making problem characterized by overwhelming complexity, non-linearity and lack of objective information regarding the desired final product qualitative characteristics. The most efficient solution for the evaluation of aged wine distillates estimations with emphasis on the properties of the aroma and the taste, when an appropriate mathematical model cannot be found, is to develop adequate and reliable expert systems based on fuzzy logic and neural networks. A fuzzy classifier and a neural network are proposed for the classification of wine distillates for each of two distinct features of the products namely the aroma and the taste. The fuzzy classifier is based on the fuzzy k-nn algorithm while the neural system is a feedforward sigmoidal multilayer network which is trained using the back-propagation method. The results show that both fuzzy and neural classification systems performed remarkably well in the evaluation of the aroma and the taste of the products. (C) 2000 Elsevier Science Ltd. All rights reserved. en
heal.publisher ELSEVIER SCI LTD en
heal.journalName JOURNAL OF FOOD ENGINEERING en
dc.identifier.doi 10.1016/S0260-8774(00)00087-X en
dc.identifier.isi ISI:000089796300007 en
dc.identifier.volume 46 en
dc.identifier.issue 4 en
dc.identifier.spage 267 en
dc.identifier.epage 275 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής