HEAL DSpace

Concerning the primary and secondary objectives in robot task definition - the "learn from humans" principle

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Potkonjak, V en
dc.contributor.author Tzafestas, S en
dc.contributor.author Kostic, D en
dc.date.accessioned 2014-03-01T01:15:31Z
dc.date.available 2014-03-01T01:15:31Z
dc.date.issued 2000 en
dc.identifier.issn 0378-4754 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/13562
dc.subject robot task en
dc.subject optimal trajectory en
dc.subject biomechanics en
dc.subject handwriting en
dc.subject legibility en
dc.subject spray-coating en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Computer Science, Software Engineering en
dc.subject.classification Mathematics, Applied en
dc.subject.other MOVEMENTS en
dc.subject.other ARM en
dc.title Concerning the primary and secondary objectives in robot task definition - the "learn from humans" principle en
heal.type journalArticle en
heal.identifier.primary 10.1016/S0378-4754(00)00225-1 en
heal.identifier.secondary http://dx.doi.org/10.1016/S0378-4754(00)00225-1 en
heal.language English en
heal.publicationDate 2000 en
heal.abstract This paper is concerned with the trajectory definition in robot tasks. Although very often ignored, the specification of robot motion is not the first step in the definition of a robot task. The task definition starts with the description of the final outcome, i.e. with the specification of the job to be performed. When this is done, the proper robot kinematics (motion law) is defined. This step, from the outcome of the task to the robot motion, is sometimes straightforward and dictated by the technology applied. However, even if a multiple choice of motion is possible leading to the same outcome, this possibility is usually avoided by preassuming a certain optimality criterion for the quality of work. Clearly, such an approach does not leave the possibility for some additional optimization in the sense of a secondary objective. So, some potential benefits are lost. This paper starts from the observation that successful operation of a robot does not necessarily imply the maximum quality of its outcome. It is sufficient if the quality is kept at a given (lower) level. Such a suboptimal task execution offers the possibility of some additional secondary optimization. The kinematics of the task is modified according to a secondary objective function. The quality is then treated as a constraint in the minimization of this secondary objective function. This optimization can be based on biomechanical principles. Here the principle: "learn from humans' is adopted, i.e. the kinematics modification is done so as to resemble the behavior of a human worker. The benefits of the approach of the paper are illustrated by two specific examples, namely the handwriting and spray-coating tasks. (C) 2000 IMACS. Published by Elsevier Science B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName MATHEMATICS AND COMPUTERS IN SIMULATION en
dc.identifier.doi 10.1016/S0378-4754(00)00225-1 en
dc.identifier.isi ISI:000165813000009 en
dc.identifier.volume 54 en
dc.identifier.issue 1-3 en
dc.identifier.spage 145 en
dc.identifier.epage 157 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής