HEAL DSpace

Extremal solutions and strong relaxation for nonlinear periodic evolution inclusions

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Papageorgiou, NS en
dc.contributor.author Yannakakis, N en
dc.date.accessioned 2014-03-01T01:15:37Z
dc.date.available 2014-03-01T01:15:37Z
dc.date.issued 2000 en
dc.identifier.issn 0013-0915 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/13624
dc.subject periodic solution en
dc.subject evolution triple en
dc.subject compact embedding en
dc.subject monotone operator en
dc.subject pseudomonotone operator en
dc.subject L-generalized pseudomonotone operator en
dc.subject.classification Mathematics en
dc.subject.other DIFFERENTIAL-INCLUSIONS en
dc.subject.other EXISTENCE en
dc.subject.other EQUATIONS en
dc.subject.other SPACES en
dc.title Extremal solutions and strong relaxation for nonlinear periodic evolution inclusions en
heal.type journalArticle en
heal.identifier.primary 10.1017/S0013091500021209 en
heal.identifier.secondary http://dx.doi.org/10.1017/S0013091500021209 en
heal.language English en
heal.publicationDate 2000 en
heal.abstract We study the existence of extremal periodic solutions for nonlinear evolution inclusions defined on an evolution triple of spaces and with the nonlinear operator A being time-dependent and pseudomonotone. Using techniques of multivalued analysis and a surjectivity result for L-generalized pseudomonotone operators, we prove the existence of extremal periodic solutions. Subsequently, by assuming that A(t,.) is monotone, we prove a strong relaxation theorem for the periodic problem. Two examples of nonlinear distributed parameter systems illustrate the applicability of our results. en
heal.publisher OXFORD UNIV PRESS en
heal.journalName PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY en
dc.identifier.doi 10.1017/S0013091500021209 en
dc.identifier.isi ISI:000165922100009 en
dc.identifier.volume 43 en
dc.identifier.spage 569 en
dc.identifier.epage 586 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής