HEAL DSpace

Image segmentation via iterative fuzzy clustering based on local space-frequency multi-feature coherence criteria

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tzafestas, SG en
dc.contributor.author Raptis, SN en
dc.date.accessioned 2014-03-01T01:15:39Z
dc.date.available 2014-03-01T01:15:39Z
dc.date.issued 2000 en
dc.identifier.issn 0921-0296 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/13642
dc.subject fuzzy classification en
dc.subject fuzzy partition matrix en
dc.subject frequency connectivity en
dc.subject space connectivity en
dc.subject fuzzy segmentation en
dc.subject iterative fuzzy clustering (IFC) en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.classification Robotics en
dc.subject.other C-MEANS en
dc.subject.other ALGORITHMS en
dc.subject.other CLASSIFICATION en
dc.title Image segmentation via iterative fuzzy clustering based on local space-frequency multi-feature coherence criteria en
heal.type journalArticle en
heal.identifier.primary 10.1023/A:1008140930775 en
heal.identifier.secondary http://dx.doi.org/10.1023/A:1008140930775 en
heal.language English en
heal.publicationDate 2000 en
heal.abstract Fuzzy set theory has recently attracted much attention in the field of image classification, image understanding and image processing. One of the major topics in fuzzy image processing is the image classification problem. This paper presents a fast and accurate iterative fuzzy clustering (I.F.C.) method dynamically adapted to the classification process. This is used for high performance fuzzy segmentation which forms the basis for reliable image understanding. The proposed fuzzy segmentation scheme examines the image connectivity in the space and frequency domains. The detected fuzzy features are combined via a block synthesis and local correlation algorithmic procedure. Some results showing that the performance of the proposed I.F.C./clustering method is superior from that of the standard fuzzy c-means method are provided. en
heal.publisher KLUWER ACADEMIC PUBL en
heal.journalName JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS en
dc.identifier.doi 10.1023/A:1008140930775 en
dc.identifier.isi ISI:000087599400003 en
dc.identifier.volume 28 en
dc.identifier.issue 1-2 en
dc.identifier.spage 21 en
dc.identifier.epage 37 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής