HEAL DSpace

Neural networks with hybrid morphological/rank/linear nodes: a unifying framework with applications to handwritten character recognition

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Pessoa, LFC en
dc.contributor.author Maragos, P en
dc.date.accessioned 2014-03-01T01:15:44Z
dc.date.available 2014-03-01T01:15:44Z
dc.date.issued 2000 en
dc.identifier.issn 0031-3203 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/13693
dc.subject morphological systems en
dc.subject MRL-filters en
dc.subject neural networks en
dc.subject back-propagation algorithm en
dc.subject handwritten character recognition en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other SYSTEMS en
dc.subject.other FILTERS en
dc.subject.other DESIGN en
dc.title Neural networks with hybrid morphological/rank/linear nodes: a unifying framework with applications to handwritten character recognition en
heal.type journalArticle en
heal.identifier.primary 10.1016/S0031-3203(99)00157-0 en
heal.identifier.secondary http://dx.doi.org/10.1016/S0031-3203(99)00157-0 en
heal.language English en
heal.publicationDate 2000 en
heal.abstract In this paper, the general class of morphological/rank/linear (MRL) multilayer feed-forward neural networks (NNs) is presented as a unifying signal processing tool that incorporates the properties of multilayer perceptrons (MLPs) and morphological/rank neural networks (MRNNs). The fundamental processing unit of MRL-NNs is the MRL-filter, where the combination of inputs in every node is formed by hybrid linear and nonlinear (of the morphological/rank type) operations. For its design we formulate a methodology using ideas from the back-propagation algorithm and robust techniques to circumvent the non-differentiability of rank functions. Extensive experimental results are presented from the problem of handwritten character recognition, which suggest that MRL-NNs not only provide better or similar performance when compared to MLPs but also can be trained faster. The MRL-NNs are a broad interesting class of nonlinear systems with many promising applications in pattern recognition and signal/image processing. (C) 2000 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName PATTERN RECOGNITION en
dc.identifier.doi 10.1016/S0031-3203(99)00157-0 en
dc.identifier.isi ISI:000086685000007 en
dc.identifier.volume 33 en
dc.identifier.issue 6 en
dc.identifier.spage 945 en
dc.identifier.epage 960 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής