dc.contributor.author |
Pessoa, LFC |
en |
dc.contributor.author |
Maragos, P |
en |
dc.date.accessioned |
2014-03-01T01:15:44Z |
|
dc.date.available |
2014-03-01T01:15:44Z |
|
dc.date.issued |
2000 |
en |
dc.identifier.issn |
0031-3203 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/13693 |
|
dc.subject |
morphological systems |
en |
dc.subject |
MRL-filters |
en |
dc.subject |
neural networks |
en |
dc.subject |
back-propagation algorithm |
en |
dc.subject |
handwritten character recognition |
en |
dc.subject.classification |
Computer Science, Artificial Intelligence |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.other |
SYSTEMS |
en |
dc.subject.other |
FILTERS |
en |
dc.subject.other |
DESIGN |
en |
dc.title |
Neural networks with hybrid morphological/rank/linear nodes: a unifying framework with applications to handwritten character recognition |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0031-3203(99)00157-0 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0031-3203(99)00157-0 |
en |
heal.language |
English |
en |
heal.publicationDate |
2000 |
en |
heal.abstract |
In this paper, the general class of morphological/rank/linear (MRL) multilayer feed-forward neural networks (NNs) is presented as a unifying signal processing tool that incorporates the properties of multilayer perceptrons (MLPs) and morphological/rank neural networks (MRNNs). The fundamental processing unit of MRL-NNs is the MRL-filter, where the combination of inputs in every node is formed by hybrid linear and nonlinear (of the morphological/rank type) operations. For its design we formulate a methodology using ideas from the back-propagation algorithm and robust techniques to circumvent the non-differentiability of rank functions. Extensive experimental results are presented from the problem of handwritten character recognition, which suggest that MRL-NNs not only provide better or similar performance when compared to MLPs but also can be trained faster. The MRL-NNs are a broad interesting class of nonlinear systems with many promising applications in pattern recognition and signal/image processing. (C) 2000 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
PATTERN RECOGNITION |
en |
dc.identifier.doi |
10.1016/S0031-3203(99)00157-0 |
en |
dc.identifier.isi |
ISI:000086685000007 |
en |
dc.identifier.volume |
33 |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.spage |
945 |
en |
dc.identifier.epage |
960 |
en |