HEAL DSpace

Nonsmooth critical point theory and nonlinear elliptic equations at resonance

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kourogenis, NC en
dc.contributor.author Papageorgiou, NS en
dc.date.accessioned 2014-03-01T01:15:44Z
dc.date.available 2014-03-01T01:15:44Z
dc.date.issued 2000 en
dc.identifier.issn 0263-6115 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/13699
dc.subject nonsmooth critical point theory en
dc.subject locally Lipschitz function en
dc.subject subdifferential en
dc.subject linking en
dc.subject nonsmooth Palais-Smale condition en
dc.subject nonsmooth Cerami condition en
dc.subject Mountain pass theorem en
dc.subject Saddle point theorem en
dc.subject problems at resonance en
dc.subject p-Laplacian en
dc.subject first eigenvalue en
dc.subject.classification Mathematics en
dc.subject.classification Statistics & Probability en
dc.subject.other PARTIAL-DIFFERENTIAL EQUATIONS en
dc.subject.other MULTIPLE NONTRIVIAL SOLUTIONS en
dc.subject.other BOUNDARY-VALUE-PROBLEMS en
dc.subject.other REGULARITY en
dc.title Nonsmooth critical point theory and nonlinear elliptic equations at resonance en
heal.type journalArticle en
heal.identifier.primary 10.2996/kmj/1138044160 en
heal.identifier.secondary http://dx.doi.org/10.2996/kmj/1138044160 en
heal.language English en
heal.publicationDate 2000 en
heal.abstract In this paper we complete two tasks. First we extend the nonsmooth critical point theory of Chang to the case where the energy functional satisfies only the weaker nonsmooth Cerami condition and we also relax the boundary conditions. Then we study semilinear and quasilinear equations (involving the p-laplacian). Using a variational approach we establish the existence of one and of multiple solutions. In simple existence theorems, we allow the right hand side to be discontinuous. In that case in order to have an existence theory, we pass to a multivalued approximation of the original problem by, roughly speaking, filling in the gaps at the discontinuity points. 2000 Mathematics subject classification: primary 35J20, 35R70, 49F15, 58E05. en
heal.publisher AUSTRALIAN MATHEMATICS PUBL ASSOC INC en
heal.journalName JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS en
dc.identifier.doi 10.2996/kmj/1138044160 en
dc.identifier.isi ISI:000090005900008 en
dc.identifier.volume 69 en
dc.identifier.spage 245 en
dc.identifier.epage 271 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής