HEAL DSpace

Numerical simulation of rheological effects in fiber spinning

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Mitsoulis, E en
dc.contributor.author Beaulne, M en
dc.date.accessioned 2014-03-01T01:15:45Z
dc.date.available 2014-03-01T01:15:45Z
dc.date.issued 2000 en
dc.identifier.issn 0730-6679 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/13706
dc.subject Numerical Simulation en
dc.subject.classification Engineering, Chemical en
dc.subject.classification Polymer Science en
dc.subject.other CONSTITUTIVE EQUATION en
dc.subject.other VISCOELASTIC LIQUID en
dc.subject.other MELT en
dc.subject.other EXTRUSION en
dc.subject.other MODEL en
dc.subject.other POLYPROPYLENE en
dc.subject.other MECHANICS en
dc.subject.other FLOWS en
dc.title Numerical simulation of rheological effects in fiber spinning en
heal.type journalArticle en
heal.identifier.primary 10.1002/1098-2329(200023)19:3<155::AID-ADV1>3.0.CO;2-B en
heal.identifier.secondary http://dx.doi.org/10.1002/1098-2329(200023)19:3<155::AID-ADV1>3.0.CO;2-B en
heal.language English en
heal.publicationDate 2000 en
heal.abstract The fiber-spinning process is an important industrial operation to manufacture synthetic fibers. The process occurs under free-surface conditions, and the final properties of the fiber are characterized by the extensional properties of the polymer. Specifically, the non-isothermal response of the polymer in uniaxial extension dominates the process. The fiber-spinning process is analyzed by means of a unidirectional approach because the thickness of the fiber is very small with respect to its lateral dimension. The analysis accounts for the prehistory of the material inside the die, based on purely extensional strains. For viscoelastic polymer melts, the constitutive equation must be able to describe adequately the rheological behavior of the polymer in extensional flow. A good candidate for such modeling is the K-BKZ integral constitutive equation, with a spectrum of relaxation times, which captures well the nonlinear viscoelastic response of polymer melts. The non-isothermal response is taken into account with a temperature shift factor utilizing the Morland-Lee hypothesis. The present work includes effects due to gravity, inertia, and air drag, where applicable. Simulation results are compared with experiments on polypropylene (PP), poly(ethylene terephthalate) (PET), and low-density polyethylene (LDPE) melts at low and high speeds. Results are also compared with previous simulations. It is shown that in some cases the extrudate swell at the spinneret exit must be taken into account to accurately predict the drawing forces, which makes a fully two-dimensional analysis a necessity for such operations. (C) 2000 John Wiley & Sons, Inc. en
heal.publisher JOHN WILEY & SONS INC en
heal.journalName ADVANCES IN POLYMER TECHNOLOGY en
dc.identifier.doi 10.1002/1098-2329(200023)19:3<155::AID-ADV1>3.0.CO;2-B en
dc.identifier.isi ISI:000088565700001 en
dc.identifier.volume 19 en
dc.identifier.issue 3 en
dc.identifier.spage 155 en
dc.identifier.epage 172 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής