dc.contributor.author |
Babenko, VF |
en |
dc.contributor.author |
Rassias, TM |
en |
dc.date.accessioned |
2014-03-01T01:15:45Z |
|
dc.date.available |
2014-03-01T01:15:45Z |
|
dc.date.issued |
2000 |
en |
dc.identifier.issn |
0022-247X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/13711 |
|
dc.subject |
Hilbert Function |
en |
dc.subject |
Spectrum |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.title |
On exact inequalities of Hardy-Littlewood-Polya type |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1006/jmaa.2000.6786 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1006/jmaa.2000.6786 |
en |
heal.language |
English |
en |
heal.publicationDate |
2000 |
en |
heal.abstract |
The following problem is investigated for certain Hilbert function spaces: for a given A greater than or equal to 0 find the infimum of the set of B greater than or equal to 0 such that the inequality parallel to x((k))parallel to(2)(2) less than or equal to A parallel to x parallel to(2)(2) + B parallel to x((r))parallel to(2)(2), for k, r is an element of N boolean OR {0}, 0 less than or equal to k < r, holds for all sufficiently smooth functions. An analogous problem is investigated under some restrictions on the spectrum of functions. (C) 2000 Academic Press. |
en |
heal.publisher |
ACADEMIC PRESS INC |
en |
heal.journalName |
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS |
en |
dc.identifier.doi |
10.1006/jmaa.2000.6786 |
en |
dc.identifier.isi |
ISI:000086999300017 |
en |
dc.identifier.volume |
245 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
570 |
en |
dc.identifier.epage |
593 |
en |