HEAL DSpace

On-line retrainable neural networks: Improving the performance of neural networks in image analysis problems

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Doulamis, AD en
dc.contributor.author Doulamis, ND en
dc.contributor.author Kollias, SD en
dc.date.accessioned 2014-03-01T01:15:45Z
dc.date.available 2014-03-01T01:15:45Z
dc.date.issued 2000 en
dc.identifier.issn 1045-9227 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/13716
dc.subject image analysis en
dc.subject MPEG-4 en
dc.subject neural-network retraining en
dc.subject segmentation en
dc.subject weight adaptation en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.classification Computer Science, Hardware & Architecture en
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other MODEL en
dc.subject.other SEGMENTATION en
dc.subject.other VIDEO en
dc.subject.other ALGORITHMS en
dc.subject.other FIELDS en
dc.title On-line retrainable neural networks: Improving the performance of neural networks in image analysis problems en
heal.type journalArticle en
heal.identifier.primary 10.1109/72.822517 en
heal.identifier.secondary http://dx.doi.org/10.1109/72.822517 en
heal.language English en
heal.publicationDate 2000 en
heal.abstract A novel approach is presented in this paper for improving the performance of neural-network classifiers in image recognition, segmentation, or coding applications, based on a retraining procedure at the user level. The procedure includes: 1) a training algorithm for adapting the network weights to the current condition; 2) a maximum a posteriori (MAP) estimation procedure for optimally selecting the most representative data of the current environment as retraining data; and 3) a decision mechanism for determining when network retraining should be activated. The training algorithm takes into consideration both the former and the current network knowledge in order to achieve good generalization. The MAP estimation procedure models the network output as a Markov random field (MRF) and optimally selects the set of training inputs and corresponding desired outputs, Results are presented which illustrate the theoretical developments as well as the performance of the proposed approach in real-life experiments. en
heal.publisher IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC en
heal.journalName IEEE TRANSACTIONS ON NEURAL NETWORKS en
dc.identifier.doi 10.1109/72.822517 en
dc.identifier.isi ISI:000085524000014 en
dc.identifier.volume 11 en
dc.identifier.issue 1 en
dc.identifier.spage 137 en
dc.identifier.epage 155 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής