dc.contributor.author |
Arvanitis, KG |
en |
dc.contributor.author |
Zaharenakis, E |
en |
dc.contributor.author |
Soldatos, A |
en |
dc.date.accessioned |
2014-03-01T01:15:45Z |
|
dc.date.available |
2014-03-01T01:15:45Z |
|
dc.date.issued |
2000 |
en |
dc.identifier.issn |
0925-5001 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/13719 |
|
dc.subject |
LQG control |
en |
dc.subject |
noise rejection |
en |
dc.subject |
robustness |
en |
dc.subject |
sampled-data control |
en |
dc.subject |
structural control |
en |
dc.subject.classification |
Operations Research & Management Science |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
DISCRETE ALGEBRAIC RICCATI |
en |
dc.subject.other |
TIME-INVARIANT SYSTEMS |
en |
dc.subject.other |
POLE ASSIGNMENT |
en |
dc.subject.other |
OUTPUT-FEEDBACK |
en |
dc.subject.other |
ROBUST-CONTROL |
en |
dc.subject.other |
LOWER BOUNDS |
en |
dc.subject.other |
EQUATION |
en |
dc.subject.other |
COMPENSATION |
en |
dc.title |
Optimal noise rejection in structural analysis by means of generalized sampled-data hold functions |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1023/A:1026726729698 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1023/A:1026726729698 |
en |
heal.language |
English |
en |
heal.publicationDate |
2000 |
en |
heal.abstract |
In this paper, a technique for optimal noise rejection, based on generalized sampled-data hold functions is applied to the control of civil engineering structures. The technique consists in suitably modulating the sampled outputs of the system under control by periodically varying functions in order to attenuate the effect of the disturbances on the system states to an acceptable level, by minimizing a quadratic cost function. This mininization is performed by feeding back the outputs of the system, which are assumed to be corrupted by measurement noise. Moreover, in the present paper, the robustness properties of the GSHF based optimal regulator is analyzed and guaranteed stability margins, expressed in terms of elementary cost and system matrices, are proposed for such a type of optimal regulators. The effectiveness of the method is demonstrated by various simulation results. The results of the paper can be used to assess the detrimental effect of noise on the closed-loop system and the tradeoff involved in assuring good sampled-data performance and sufficient robustness. |
en |
heal.publisher |
KLUWER ACADEMIC PUBL |
en |
heal.journalName |
JOURNAL OF GLOBAL OPTIMIZATION |
en |
dc.identifier.doi |
10.1023/A:1026726729698 |
en |
dc.identifier.isi |
ISI:000165633600004 |
en |
dc.identifier.volume |
17 |
en |
dc.identifier.issue |
1-4 |
en |
dc.identifier.spage |
19 |
en |
dc.identifier.epage |
42 |
en |