dc.contributor.author |
Vogiatzis, D
|
en |
dc.contributor.author |
Stafylopatis, A
|
en |
dc.date.accessioned |
2014-03-01T01:15:51Z |
|
dc.date.available |
2014-03-01T01:15:51Z |
|
dc.date.issued |
2000 |
en |
dc.identifier.issn |
0378-4754 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/13777 |
|
dc.subject |
neural networks |
en |
dc.subject |
reinforcement learning |
en |
dc.subject |
symbolic/subsymbolic processing |
en |
dc.subject |
rule extraction |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.classification |
Computer Science, Software Engineering |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
Artificial neural networks |
en |
dc.title |
Reinforcement learning for symbolic expression induction |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0378-4754(99)00115-9 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0378-4754(99)00115-9 |
en |
heal.language |
English |
en |
heal.publicationDate |
2000 |
en |
heal.abstract |
We propose a neural network method for the generation of symbolic expressions using reinforcement learning. Usually, the symbolic form expressed in terms of a calculus (propositional, first-order, lambda, etc.) is deemed comprehensible by humans and it is necessary as far as the acceptance of neural networks is concerned. According to the proposed method, a human decides on the kind and number of primitive functions which, with the appropriate composition (in the mathematical sense), can represent a mapping between two domains. The appropriate composition is achieved by an agent which tries many compositions and receives a reward depending on the quality of the composed function. Naturally, the learning agent (which in our case is a recurrent neural net) must perform the credit assignment task. Results are encouraging concerning the derivation of simple arithmetic expressions. (C) 2000 IMACS/Elsevier Science B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
MATHEMATICS AND COMPUTERS IN SIMULATION |
en |
dc.identifier.doi |
10.1016/S0378-4754(99)00115-9 |
en |
dc.identifier.isi |
ISI:000084223700004 |
en |
dc.identifier.volume |
51 |
en |
dc.identifier.issue |
3-4 |
en |
dc.identifier.spage |
169 |
en |
dc.identifier.epage |
179 |
en |