dc.contributor.author |
Karavelas, MI |
en |
dc.contributor.author |
Kaklis, PD |
en |
dc.date.accessioned |
2014-03-01T01:15:53Z |
|
dc.date.available |
2014-03-01T01:15:53Z |
|
dc.date.issued |
2000 |
en |
dc.identifier.issn |
1017-1398 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/13800 |
|
dc.subject |
interpolation |
en |
dc.subject |
shape-preserving |
en |
dc.subject |
splines |
en |
dc.subject |
nu-spline |
en |
dc.subject |
space curves |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.title |
Spatial shape-preserving interpolation using nu-splines |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1023/A:1019156202082 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1023/A:1019156202082 |
en |
heal.language |
English |
en |
heal.publicationDate |
2000 |
en |
heal.abstract |
We present a global iterative algorithm for constructing spatial G(2)-continuous interpolating nu-splines, which preserve the shape of the polygonal line that interpolates the given points. Furthermore, the algorithm can handle data exhibiting two kinds of degeneracy, namely, coplanar quadruples and collinear triplets of points. The convergence of the algorithm stems from the asymptotic properties of the curvature, torsion and Frenet frame of nu-splines for large values of the tension parameters, which are thoroughly investigated and presented. The performance of our approach is tested on two data sets, one of synthetic nature and the other of industrial interest. |
en |
heal.publisher |
BALTZER SCI PUBL BV |
en |
heal.journalName |
NUMERICAL ALGORITHMS |
en |
dc.identifier.doi |
10.1023/A:1019156202082 |
en |
dc.identifier.isi |
ISI:000087920500003 |
en |
dc.identifier.volume |
23 |
en |
dc.identifier.issue |
2-3 |
en |
dc.identifier.spage |
217 |
en |
dc.identifier.epage |
250 |
en |