dc.contributor.author |
Psarrakos, PJ |
en |
dc.contributor.author |
Vlamos, PM |
en |
dc.date.accessioned |
2014-03-01T01:15:55Z |
|
dc.date.available |
2014-03-01T01:15:55Z |
|
dc.date.issued |
2000 |
en |
dc.identifier.issn |
0308-1087 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/13829 |
|
dc.subject |
matrix polynomial |
en |
dc.subject |
q-numerical range |
en |
dc.subject |
connected component |
en |
dc.subject.classification |
Mathematics |
en |
dc.title |
The q-numerical range of matrix polynomials |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1080/03081080008818627 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1080/03081080008818627 |
en |
heal.language |
English |
en |
heal.publicationDate |
2000 |
en |
heal.abstract |
Let P(lambda) = A(m)lambda (m) + A(m-1)lambda (m-1) +...+A(1)lambda +A(0) be a matrix polynomial, where A(j)(j = 0, 1,...,m) are n x n complex matrices and lambda is a complex variable. For a q is an element of [0, 1] the q-numerical range of P(lambda) is defined as W-q[P(lambda)] = (lambda is an element of C : x*P(lambda )y = 0, x*x = y*y = 1 and x*y = q). In this paper we study W-q[P(lambda)] and our emphasis is on the geometrical properties of W-q[P(lambda)]. We consider the location of W-q[P(lambda)] in the complex plane and a theorem concerning the boundary of W-q[P(lambda] is also obtained. |
en |
heal.publisher |
GORDON BREACH SCI PUBL LTD |
en |
heal.journalName |
LINEAR & MULTILINEAR ALGEBRA |
en |
dc.identifier.doi |
10.1080/03081080008818627 |
en |
dc.identifier.isi |
ISI:000165307700001 |
en |
dc.identifier.volume |
47 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
1 |
en |
dc.identifier.epage |
9 |
en |