HEAL DSpace

Training the random neural network using quasi-Newton methods

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Likas, A en
dc.contributor.author Stafylopatis, A en
dc.date.accessioned 2014-03-01T01:15:57Z
dc.date.available 2014-03-01T01:15:57Z
dc.date.issued 2000 en
dc.identifier.issn 0377-2217 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/13843
dc.subject Gradient Descent Method en
dc.subject Optimization Technique en
dc.subject quasi-newton method en
dc.subject Quasi Newton en
dc.subject Random Neural Network en
dc.subject.classification Management en
dc.subject.classification Operations Research & Management Science en
dc.subject.other QUEUING-NETWORKS en
dc.subject.other OPTIMIZATION en
dc.subject.other CUSTOMERS en
dc.title Training the random neural network using quasi-Newton methods en
heal.type journalArticle en
heal.identifier.primary 10.1016/S0377-2217(99)00482-8 en
heal.identifier.secondary http://dx.doi.org/10.1016/S0377-2217(99)00482-8 en
heal.language English en
heal.publicationDate 2000 en
heal.abstract Training in the random neural network (RNN) is generally specified as the minimization of an appropriate error function with respect to the parameters of the network (weights corresponding to positive and negative connections). We propose here a technique for error minimization that is based on the use of quasi-Newton optimization techniques. Such techniques offer more sophisticated exploitation of the gradient information compared to simple gradient descent methods, but are computationally more expensive and difficult to implement. In this work we specify the necessary details for the application of quasi-Newton methods to the training of the RNN, and provide comparative experimental results from the use of these methods to some well-known test problems, which confirm the superiority of the approach. (C) 2000 Elsevier Science B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName EUROPEAN JOURNAL OF OPERATIONAL RESEARCH en
dc.identifier.doi 10.1016/S0377-2217(99)00482-8 en
dc.identifier.isi ISI:000088925200008 en
dc.identifier.volume 126 en
dc.identifier.issue 2 en
dc.identifier.spage 331 en
dc.identifier.epage 339 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής