HEAL DSpace

A boundary element solution to the soap bubble problem

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Katsikadelis, JT en
dc.contributor.author Nerantzaki, MS en
dc.date.accessioned 2014-03-01T01:15:58Z
dc.date.available 2014-03-01T01:15:58Z
dc.date.issued 2001 en
dc.identifier.issn 0178-7675 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/13862
dc.subject Boundary Element en
dc.subject Boundary Element Method en
dc.subject Computational Method en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.classification Mechanics en
dc.subject.other Boundary value problems en
dc.subject.other Computational methods en
dc.subject.other Differential equations en
dc.subject.other Integral equations en
dc.subject.other Laplace transforms en
dc.subject.other Problem solving en
dc.subject.other Analogue equation method en
dc.subject.other Engineering analysis en
dc.subject.other Molecular forces en
dc.subject.other Soap bubble problem en
dc.subject.other Boundary element method en
dc.title A boundary element solution to the soap bubble problem en
heal.type journalArticle en
heal.identifier.primary 10.1007/s004660000224 en
heal.identifier.secondary http://dx.doi.org/10.1007/s004660000224 en
heal.language English en
heal.publicationDate 2001 en
heal.abstract The boundary element method (BEM) is applied to the soap bubble problem, that is to the problem of determining the surface that a soap bubble constrained by bounding contours assumes under the action of molecular forces. This is also the shape of a uniformly stretched membrane bounded by one or more non-intersecting curves. As the slopes of the membrane surface are finite, their square can not be neglected and the resulting governing equation is non-linear. The problem is solved using the analogue equation method (AEM). According to this method the non-linear membrane is substituted by a linear one subjected to a fictitious transverse load. The fictitious load is established using the BEM. Numerical examples are presented which illustrate the method and demonstrate its accuracy. This application of the BEM to non-linear problems shows that BEM is a versatile computational method for all-purpose use in engineering analysis. The solution of the problem at hand is very important in engineering, since the soap bubble surface can be used as the best initial form for membrane roofs. en
heal.publisher SPRINGER-VERLAG en
heal.journalName Computational Mechanics en
dc.identifier.doi 10.1007/s004660000224 en
dc.identifier.isi ISI:000167535200007 en
dc.identifier.volume 27 en
dc.identifier.issue 2 en
dc.identifier.spage 154 en
dc.identifier.epage 159 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής