dc.contributor.author |
Belibassakis, KA |
en |
dc.contributor.author |
Athanassoulis, GA |
en |
dc.contributor.author |
Gerostathis, ThP |
en |
dc.date.accessioned |
2014-03-01T01:15:59Z |
|
dc.date.available |
2014-03-01T01:15:59Z |
|
dc.date.issued |
2001 |
en |
dc.identifier.issn |
0141-1187 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/13868 |
|
dc.subject |
Coupled-mode model |
en |
dc.subject |
Refraction-diffraction |
en |
dc.subject |
Sloping-bottom |
en |
dc.subject.classification |
Engineering, Ocean |
en |
dc.subject.classification |
Oceanography |
en |
dc.subject.other |
Bathymetry |
en |
dc.subject.other |
Boundary conditions |
en |
dc.subject.other |
Boundary layers |
en |
dc.subject.other |
Diffraction |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Refraction |
en |
dc.subject.other |
Sediment transport |
en |
dc.subject.other |
Water waves |
en |
dc.subject.other |
Coupled-mode model |
en |
dc.subject.other |
Linear waves |
en |
dc.subject.other |
Oceanography |
en |
dc.subject.other |
bathymetry |
en |
dc.subject.other |
diffraction |
en |
dc.subject.other |
gravity wave |
en |
dc.subject.other |
numerical model |
en |
dc.subject.other |
refraction |
en |
dc.title |
A coupled-mode model for the refraction-diffraction of linear waves over steep three-dimensional bathymetry |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0141-1187(02)00004-4 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0141-1187(02)00004-4 |
en |
heal.language |
English |
en |
heal.publicationDate |
2001 |
en |
heal.abstract |
A consistent coupled-mode model recently developed by Athanassoulis and Belibassakis [1], is generalized in 2 + 1 dimensions and applied to the diffraction of small-amplitude water waves from localized three-dimensional scatterers lying over a parallel-contour bathymetry. The wave field is decomposed into an incident field, carrying out the effects of the background bathymetry, and a diffraction field, with forcing restricted on the surface of the localized scatterer(s). The vertical distribution of the wave potential is represented by a uniformly convergent local-mode series containing, except of the ususal propagating and evanescent modes, an additional mode, accounting for the sloping bottom boundary condition. By applying a variational principle, the problem is reduced to a coupled-mode system of differential equations in the horizontal space. To treat the unbounded domain, the Berenger perfectly matched layer model is optimized and used as an absorbing boundary condition. Computed results are compared with other simpler models and verified against experimental data. The inclusion of the sloping-bottom mode in the representation substantially accelerates its convergence, and thus, a few modes are enough to obtain accurately the wave potential and velocity up to and including the boundaries, even in steep bathymetry regions. The present method provides high-quality information concerning the pressure and the tangential velocity at the bottom, useful for the study of oscillatinga bottom boundary layer, sea-bed movement and sediment transport studies. (C) 2002 Published by Elsevier Science Ltd. |
en |
heal.publisher |
ELSEVIER SCI LTD |
en |
heal.journalName |
Applied Ocean Research |
en |
dc.identifier.doi |
10.1016/S0141-1187(02)00004-4 |
en |
dc.identifier.isi |
ISI:000175512900002 |
en |
dc.identifier.volume |
23 |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.spage |
319 |
en |
dc.identifier.epage |
336 |
en |