dc.contributor.author |
Zervos, A |
en |
dc.contributor.author |
Papanastasiou, P |
en |
dc.contributor.author |
Vardoulakis, I |
en |
dc.date.accessioned |
2014-03-01T01:15:59Z |
|
dc.date.available |
2014-03-01T01:15:59Z |
|
dc.date.issued |
2001 |
en |
dc.identifier.issn |
0029-5981 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/13871 |
|
dc.subject |
C1 finite element |
en |
dc.subject |
Gradient elasticity |
en |
dc.subject |
Gradient plasticity |
en |
dc.subject |
Localization of deformation |
en |
dc.subject |
Material softening |
en |
dc.subject |
Shear band |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.other |
Boundary conditions |
en |
dc.subject.other |
Computational geometry |
en |
dc.subject.other |
Continuum mechanics |
en |
dc.subject.other |
Deformation |
en |
dc.subject.other |
Finite element method |
en |
dc.subject.other |
Laplace transforms |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Sensitivity analysis |
en |
dc.subject.other |
Shear stress |
en |
dc.subject.other |
Strain |
en |
dc.subject.other |
Gradient elastoplastic models |
en |
dc.subject.other |
Shear-band zones |
en |
dc.subject.other |
Strain-softening materials |
en |
dc.subject.other |
Elastoplasticity |
en |
dc.subject.other |
deformation |
en |
dc.subject.other |
elastoplasticity |
en |
dc.subject.other |
finite element method |
en |
dc.subject.other |
fracture mechanics |
en |
dc.title |
A finite element displacement formulation for gradient elastoplasticity |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1002/1097-0207(20010228)50:6<1369::AID-NME72>3.0.CO;2-K |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1002/1097-0207(20010228)50:6<1369::AID-NME72>3.0.CO;2-K |
en |
heal.language |
English |
en |
heal.publicationDate |
2001 |
en |
heal.abstract |
We present a second gradient elastoplastic model for strain-softening materials based entirely on a finite element displacement formulation. The stress increment is related to both the strain increment and its Laplacian. The displacement field is the only field needed to be discretized using a C1 continuity element. The required higher-order boundary conditions arise naturally from the displacement field. The model is developed to regularize the ill-posedness caused by strain-softening material behaviour. The gradient terms in the constitutive equations introduce an extra material parameter with dimensions of length allowing robust modelling of the post-peak material behaviour leading to localization of deformation. Mesh insensitivity is demonstrated by modelling localization of deformation in biaxial tests. It is shown that both the thickness and inclination of the shear-band zone are insensitive to the mesh directionality and refinement and agree with the expected theoretical and experimental values. Copyright © 2001 John Wiley & Sons, Ltd. |
en |
heal.publisher |
JOHN WILEY & SONS LTD |
en |
heal.journalName |
International Journal for Numerical Methods in Engineering |
en |
dc.identifier.doi |
10.1002/1097-0207(20010228)50:6<1369::AID-NME72>3.0.CO;2-K |
en |
dc.identifier.isi |
ISI:000166945500006 |
en |
dc.identifier.volume |
50 |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.spage |
1369 |
en |
dc.identifier.epage |
1388 |
en |