HEAL DSpace

A finite element displacement formulation for gradient elastoplasticity

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Zervos, A en
dc.contributor.author Papanastasiou, P en
dc.contributor.author Vardoulakis, I en
dc.date.accessioned 2014-03-01T01:15:59Z
dc.date.available 2014-03-01T01:15:59Z
dc.date.issued 2001 en
dc.identifier.issn 0029-5981 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/13871
dc.subject C1 finite element en
dc.subject Gradient elasticity en
dc.subject Gradient plasticity en
dc.subject Localization of deformation en
dc.subject Material softening en
dc.subject Shear band en
dc.subject.classification Engineering, Multidisciplinary en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.other Boundary conditions en
dc.subject.other Computational geometry en
dc.subject.other Continuum mechanics en
dc.subject.other Deformation en
dc.subject.other Finite element method en
dc.subject.other Laplace transforms en
dc.subject.other Mathematical models en
dc.subject.other Sensitivity analysis en
dc.subject.other Shear stress en
dc.subject.other Strain en
dc.subject.other Gradient elastoplastic models en
dc.subject.other Shear-band zones en
dc.subject.other Strain-softening materials en
dc.subject.other Elastoplasticity en
dc.subject.other deformation en
dc.subject.other elastoplasticity en
dc.subject.other finite element method en
dc.subject.other fracture mechanics en
dc.title A finite element displacement formulation for gradient elastoplasticity en
heal.type journalArticle en
heal.identifier.primary 10.1002/1097-0207(20010228)50:6<1369::AID-NME72>3.0.CO;2-K en
heal.identifier.secondary http://dx.doi.org/10.1002/1097-0207(20010228)50:6<1369::AID-NME72>3.0.CO;2-K en
heal.language English en
heal.publicationDate 2001 en
heal.abstract We present a second gradient elastoplastic model for strain-softening materials based entirely on a finite element displacement formulation. The stress increment is related to both the strain increment and its Laplacian. The displacement field is the only field needed to be discretized using a C1 continuity element. The required higher-order boundary conditions arise naturally from the displacement field. The model is developed to regularize the ill-posedness caused by strain-softening material behaviour. The gradient terms in the constitutive equations introduce an extra material parameter with dimensions of length allowing robust modelling of the post-peak material behaviour leading to localization of deformation. Mesh insensitivity is demonstrated by modelling localization of deformation in biaxial tests. It is shown that both the thickness and inclination of the shear-band zone are insensitive to the mesh directionality and refinement and agree with the expected theoretical and experimental values. Copyright © 2001 John Wiley &amp; Sons, Ltd. en
heal.publisher JOHN WILEY & SONS LTD en
heal.journalName International Journal for Numerical Methods in Engineering en
dc.identifier.doi 10.1002/1097-0207(20010228)50:6<1369::AID-NME72>3.0.CO;2-K en
dc.identifier.isi ISI:000166945500006 en
dc.identifier.volume 50 en
dc.identifier.issue 6 en
dc.identifier.spage 1369 en
dc.identifier.epage 1388 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής