A multigrid method with higher-order discretization schemes

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Varonos, AA en
dc.contributor.author Bergeles, GC en
dc.date.accessioned 2014-03-01T01:16:01Z
dc.date.available 2014-03-01T01:16:01Z
dc.date.issued 2001 en
dc.identifier.issn 0271-2091 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/13881
dc.subject Covergence rate en
dc.subject Higher-order schemes en
dc.subject Multigrid en
dc.subject Numerical accuracy en
dc.subject SIMPLE en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.classification Mechanics en
dc.subject.classification Physics, Fluids & Plasmas en
dc.subject.other Algorithms en
dc.subject.other Computational methods en
dc.subject.other Convergence of numerical methods en
dc.subject.other Mass transfer en
dc.subject.other Mathematical models en
dc.subject.other Higher-order discretization methods en
dc.subject.other Multigrid method en
dc.subject.other Turbulent flow en
dc.subject.other algorithm en
dc.subject.other computational fluid dynamics en
dc.subject.other grid en
dc.subject.other three-dimensional flow en
dc.subject.other turbulence en
dc.subject.other two-dimensional flow en
dc.title A multigrid method with higher-order discretization schemes en
heal.type journalArticle en
heal.identifier.primary 10.1002/1097-0363(20010228)35:4<395::AID-FLD97>3.0.CO;2-V en
heal.identifier.secondary http://dx.doi.org/10.1002/1097-0363(20010228)35:4<395::AID-FLD97>3.0.CO;2-V en
heal.language English en
heal.publicationDate 2001 en
heal.abstract The implementation of the multigrid method into the SIMPLE algorithm presents interesting aspects concerning the mass fluxes conservation on coarser grids, the k-epsilon turbulence model and the higher-order discretization schemes. Higher-order discretization schemes for the convection terms are increasingly used in order to guarantee accuracy in demanding engineering applications. However, when used in single-grid algorithms, their convergence is considerably slower compared with the first-order schemes. Unbounded higher-order schemes offer maximum accuracy, but quite often they do not converge due to their oscillatory behaviour. This paper demonstrates the dual function of the multigrid method: reduction of CPU time and stabilization of the iterating procedure, making it possible to perform computations with the third-order accurate QUICK scheme in all cases. The method is applied to the calculation of two- and three-dimensional flows with or without turbulence modelling. The results show that the convergence rate of the present algorithm does not deteriorate when QUICK is used and that, if applied on complex engineering cases, large gains in computational time can be achieved. Copyright (C) 2001 John Wiley & Sons, Ltd. en
heal.publisher JOHN WILEY & SONS LTD en
heal.journalName International Journal for Numerical Methods in Fluids en
dc.identifier.doi 10.1002/1097-0363(20010228)35:4<395::AID-FLD97>3.0.CO;2-V en
dc.identifier.isi ISI:000166971700002 en
dc.identifier.volume 35 en
dc.identifier.issue 4 en
dc.identifier.spage 395 en
dc.identifier.epage 420 en

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record