dc.contributor.author |
Georgilakis, PS |
en |
dc.contributor.author |
Doulamis, ND |
en |
dc.contributor.author |
Doulamis, AD |
en |
dc.contributor.author |
Hatziargyriou, ND |
en |
dc.contributor.author |
Kollias, SD |
en |
dc.date.accessioned |
2014-03-01T01:16:02Z |
|
dc.date.available |
2014-03-01T01:16:02Z |
|
dc.date.issued |
2001 |
en |
dc.identifier.issn |
1094-6977 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/13891 |
|
dc.subject |
Core grouping process |
en |
dc.subject |
Decision trees |
en |
dc.subject |
Genetic algorithms |
en |
dc.subject |
Intelligent core loss modeling |
en |
dc.subject |
Iron loss reduction |
en |
dc.subject |
Neural networks |
en |
dc.subject.classification |
Computer Science, Artificial Intelligence |
en |
dc.subject.classification |
Computer Science, Cybernetics |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.other |
Core grouping process |
en |
dc.subject.other |
Decision trees |
en |
dc.subject.other |
Intelligent core loss modeling |
en |
dc.subject.other |
Iron loss reduction |
en |
dc.subject.other |
Adaptive algorithms |
en |
dc.subject.other |
Cost effectiveness |
en |
dc.subject.other |
Decision theory |
en |
dc.subject.other |
Genetic algorithms |
en |
dc.subject.other |
Magnetic cores |
en |
dc.subject.other |
Magnetic leakage |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Neural networks |
en |
dc.subject.other |
Electric transformers |
en |
dc.title |
A novel iron loss reduction technique for distribution transformers based on a combined genetic algorithm-neural network approach |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/5326.923265 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/5326.923265 |
en |
heal.language |
English |
en |
heal.publicationDate |
2001 |
en |
heal.abstract |
This paper presents an effective method to reduce the iron losses of wound core distribution transformers based on a combined neural network- genetic algorithm approach. The originality of the work presented in this paper is that it tackles the iron loss reduction problem during the transformer production phase, while previous works were concentrated on the design phase. More specifically, neural networks effectively use measurements taken at the first stages of core construction in order to predict the iron losses of the assembled transformers, while genetic algorithms are used to improve the grouping process of the individual cores by reducing iron losses of assembled transformers. The proposed method has been tested on a transformer manufacturing industry. The results demonstrate the feasibility and practicality of this approach. Significant reduction of transformer iron losses is observed in comparison to the current practice leading to important economic savings for the transformer manufacturer. |
en |
heal.publisher |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
en |
heal.journalName |
IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews |
en |
dc.identifier.doi |
10.1109/5326.923265 |
en |
dc.identifier.isi |
ISI:000168755000002 |
en |
dc.identifier.volume |
31 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
16 |
en |
dc.identifier.epage |
34 |
en |