HEAL DSpace

A novel iron loss reduction technique for distribution transformers based on a combined genetic algorithm-neural network approach

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Georgilakis, PS en
dc.contributor.author Doulamis, ND en
dc.contributor.author Doulamis, AD en
dc.contributor.author Hatziargyriou, ND en
dc.contributor.author Kollias, SD en
dc.date.accessioned 2014-03-01T01:16:02Z
dc.date.available 2014-03-01T01:16:02Z
dc.date.issued 2001 en
dc.identifier.issn 1094-6977 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/13891
dc.subject Core grouping process en
dc.subject Decision trees en
dc.subject Genetic algorithms en
dc.subject Intelligent core loss modeling en
dc.subject Iron loss reduction en
dc.subject Neural networks en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.classification Computer Science, Cybernetics en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.other Core grouping process en
dc.subject.other Decision trees en
dc.subject.other Intelligent core loss modeling en
dc.subject.other Iron loss reduction en
dc.subject.other Adaptive algorithms en
dc.subject.other Cost effectiveness en
dc.subject.other Decision theory en
dc.subject.other Genetic algorithms en
dc.subject.other Magnetic cores en
dc.subject.other Magnetic leakage en
dc.subject.other Mathematical models en
dc.subject.other Neural networks en
dc.subject.other Electric transformers en
dc.title A novel iron loss reduction technique for distribution transformers based on a combined genetic algorithm-neural network approach en
heal.type journalArticle en
heal.identifier.primary 10.1109/5326.923265 en
heal.identifier.secondary http://dx.doi.org/10.1109/5326.923265 en
heal.language English en
heal.publicationDate 2001 en
heal.abstract This paper presents an effective method to reduce the iron losses of wound core distribution transformers based on a combined neural network- genetic algorithm approach. The originality of the work presented in this paper is that it tackles the iron loss reduction problem during the transformer production phase, while previous works were concentrated on the design phase. More specifically, neural networks effectively use measurements taken at the first stages of core construction in order to predict the iron losses of the assembled transformers, while genetic algorithms are used to improve the grouping process of the individual cores by reducing iron losses of assembled transformers. The proposed method has been tested on a transformer manufacturing industry. The results demonstrate the feasibility and practicality of this approach. Significant reduction of transformer iron losses is observed in comparison to the current practice leading to important economic savings for the transformer manufacturer. en
heal.publisher IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC en
heal.journalName IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews en
dc.identifier.doi 10.1109/5326.923265 en
dc.identifier.isi ISI:000168755000002 en
dc.identifier.volume 31 en
dc.identifier.issue 1 en
dc.identifier.spage 16 en
dc.identifier.epage 34 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής