HEAL DSpace

A novel pore structure tortuosity concept based on nitrogen sorption hysteresis data

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Salmas, CE en
dc.contributor.author Androutsopoulos, GP en
dc.date.accessioned 2014-03-01T01:16:02Z
dc.date.available 2014-03-01T01:16:02Z
dc.date.issued 2001 en
dc.identifier.issn 0888-5885 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/13892
dc.subject Nitrogen en
dc.subject Pore Structure en
dc.subject.classification Engineering, Chemical en
dc.subject.other Aluminum oxide membrane en
dc.subject.other Mercury entrapment en
dc.subject.other Mercury porosimetry en
dc.subject.other Nitrogen sorption hysteresis data en
dc.subject.other Pore configuration model en
dc.subject.other Pore structure en
dc.subject.other Porous glass en
dc.subject.other Tortuosity factors en
dc.subject.other Alumina en
dc.subject.other Catalysts en
dc.subject.other Glass en
dc.subject.other Hysteresis en
dc.subject.other Lignite en
dc.subject.other Mathematical models en
dc.subject.other Mercury (metal) en
dc.subject.other Molecular structure en
dc.subject.other Nitrogen en
dc.subject.other Pore size en
dc.subject.other Porous materials en
dc.subject.other Sorption en
dc.subject.other Diffusion in solids en
dc.subject.other aluminum oxide en
dc.subject.other glass en
dc.subject.other lignite en
dc.subject.other mcm 41 en
dc.subject.other mercury en
dc.subject.other nitrogen en
dc.subject.other adsorption en
dc.subject.other article en
dc.subject.other catalyst en
dc.subject.other chemical structure en
dc.subject.other curve fitting en
dc.subject.other data analysis en
dc.subject.other diffusion en
dc.subject.other hysteresis en
dc.subject.other molecular size en
dc.subject.other porosity en
dc.subject.other volumetry en
dc.title A novel pore structure tortuosity concept based on nitrogen sorption hysteresis data en
heal.type journalArticle en
heal.identifier.primary 10.1021/ie000626y en
heal.identifier.secondary http://dx.doi.org/10.1021/ie000626y en
heal.language English en
heal.publicationDate 2001 en
heal.abstract A corrugated pore structure model (CPSM-nitrogen)9 was employed to define a novel pore structure tortuosity concept. An empirical correlation is proposed for the prediction of tortuosity factors τCPSM as follows: τCPSM = 1+A[(Dmax,eff-Dmin,eff)/Dmean](Ns - 2)a. Constants A and a are adjustable parameters. The second factor reflects the influence of the intrinsic pore size distribution, and the third expresses the contribution of the nominal pore length parameter Ns. The latter is, by definition, the number of pore segments forming a single corrugated pore of the CPSM pore configuration model and represents the frequency of pore cross section variation per unit length along a characteristic catalyst pellet dimension. The determination of Ns and (Dmax,eff - Dmin,eff)/Dmean is accomplished by fitting the CPSM model over the pertinent nitrogen sorption hysteresis data. Coefficients A and a were found to be A = 0.69 and a = 0.58 by applying the empirical correlation for two specified materials of known tortuosity. The tortuosity factors for an anodic aluminum oxide membrane, MCM-41 materials, dried lignite, a porous glass, and several HDS catalysts were predicted to be 2.60, 1.2-1.13, 1.33-2.79, 6.60, and 2.75-10.07, respectively. Such values approximate the literature data. Mercury porosimetry runs on the HDS catalysts showed a proportional increase in mercury entrapment with an increase in the corresponding τCPSM values. The tortuosity factor of lignite increases proportionally with the pore volume evolution. Further testing of the proposed correlation requires a rigorous analysis of diffusion phenomena, based on the CPSM pore structure configuration, combined with effective diffusivity measurements.A corrugated pore structure model (CPSM-nitrogen)9 was employed to define a novel pore structure tortuosity concept. An empirical correlation is proposed for the prediction of tortuosity factors τCPSM as follows: τCPSM = 1 + A[Dmax,eff - Dmin,eff)/Dmean](NS - 2)a. Constants A and a are adjustable parameters. The second factor reflects the influence of the intrinsic pore size distribution, and the third expresses the contribution of the nominal pore length parameter NS. The latter is, by definition, the number of pore segments forming a single corrugated pore of the CPSM pore configuration model and represents the frequency of pore cross section variation per unit length along a characteristic catalyst pellet dimension. The determination of NS and (Dmax,eff - Dmin,eff)/Dmean is accomplished by fitting the CPSM model over the pertinent nitrogen sorption hysteresis data. Coefficients A and a were found to be A = 0.69 and a = 0.58 by applying the empirical correlation for two specified materials of known tortuosity. The tortuosity factors for an anodic aluminum oxide membrane, MCM-41 materials, dried lignite, a porous glass, and several HDS catalysts were predicted to be 2.60, 1.12-1.13, 1.33-2.79, 6.60, and 2.75-10.07, respectively. Such values approximate the literature data. Mercury porosimetry runs on the HDS catalysts showed a proportional increase in mercury entrapment with an increase in the corresponding τCPSM values. The tortuosity factor of lignite increases proportionally with the pore volume evolution. Further testing of the proposed correlation requires a rigorous analysis of diffusion phenomena, based on the CPSM pore structure configuration, combined with effective diffusivity measurements. en
heal.publisher AMER CHEMICAL SOC en
heal.journalName Industrial and Engineering Chemistry Research en
dc.identifier.doi 10.1021/ie000626y en
dc.identifier.isi ISI:000166528400028 en
dc.identifier.volume 40 en
dc.identifier.issue 2 en
dc.identifier.spage 721 en
dc.identifier.epage 730 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής