HEAL DSpace

A theory of Ternary complementary pairs

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Craigen, R en
dc.contributor.author Koukouvinos, C en
dc.date.accessioned 2014-03-01T01:16:04Z
dc.date.available 2014-03-01T01:16:04Z
dc.date.issued 2001 en
dc.identifier.issn 0097-3165 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/13908
dc.subject Binary Sequence en
dc.subject Signal Processing en
dc.subject.classification Mathematics en
dc.subject.other SEQUENCES en
dc.title A theory of Ternary complementary pairs en
heal.type journalArticle en
heal.identifier.primary 10.1006/jcta.2001.3189 en
heal.identifier.secondary http://dx.doi.org/10.1006/jcta.2001.3189 en
heal.language English en
heal.publicationDate 2001 en
heal.abstract Sequences with zero autocorrelation are of interest because of their use in constructing orthogonal matrices and because of applications in signal processing, range finding devices, and spectroscopy, Golay sequences, which are pairs of binary sequences (i.e., all entries are +/-1) with zero autocorrelation, have been Studied extensively, yet are known only in lengths 2(a)10(b)26(c). Ternary complementary pairs are pairs of (0, +/-1)-sequences with zero autocorrelation (thus, Golay pairs are ternary complementary pairs with no 0's). Other kinds of pairs of sequences with zero autocorrelation, such as those admitting complex units for nonzero entries, are studied in similar contexts. Work on ternary complementary pairs is scattered throughout the combinatorics and engineering literature where the majority approach has been to classify pairs first by length and then by deficiency (the number of 0's in a pair); however, we adopt a more natural classification, first by weight (the number of nonzero entries) and then by length. We use this perspective to redevelop the basic theory of ternary complementary pairs, showing how to construct all known pairs from a handful of initial pairs we call primitive, We display all primitive pairs up to length 14, more than doubling the number that could be inferred from the existing literature. (C) 2001 Academic Press. en
heal.publisher ACADEMIC PRESS INC en
heal.journalName Journal of Combinatorial Theory. Series A en
dc.identifier.doi 10.1006/jcta.2001.3189 en
dc.identifier.isi ISI:000172162400008 en
dc.identifier.volume 96 en
dc.identifier.issue 2 en
dc.identifier.spage 358 en
dc.identifier.epage 375 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής