dc.contributor.author |
Argyros, S-A |
en |
dc.date.accessioned |
2014-03-01T01:16:05Z |
|
dc.date.available |
2014-03-01T01:16:05Z |
|
dc.date.issued |
2001 |
en |
dc.identifier.issn |
0002-9939 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/13912 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-23044529336&partnerID=40&md5=a9c0ecda7719ecb25f55cd454346fd1f |
en |
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-23044529336&partnerID=40&md5=a9c0ecda7719ecb25f55cd454346fd1f |
en |
dc.subject |
Hereditarily indecomposable danach spaces |
en |
dc.subject |
Reflexive danach spaces |
en |
dc.subject |
Universal danach spaces |
en |
dc.subject |
Well-founded trees |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.title |
A universal property of reflexive Hereditarily Indecomposable Banach spaces |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2001 |
en |
heal.abstract |
It is shown that every separable Danach space X universal for the class of reflexive Hereditarily Indecomposable space contains C[0,1] isomorphically and hence it is universal for all separable spaces. This result shows the large variety of reflexive H.I. spaces. ©2001 American Mathematical Society. |
en |
heal.publisher |
AMER MATHEMATICAL SOC |
en |
heal.journalName |
Proceedings of the American Mathematical Society |
en |
dc.identifier.isi |
ISI:000170269900014 |
en |
dc.identifier.volume |
129 |
en |
dc.identifier.issue |
11 |
en |
dc.identifier.spage |
3231 |
en |
dc.identifier.epage |
3239 |
en |