HEAL DSpace

Adaptable neural networks for unsupervised video object segmentation of stereoscopic sequences

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Doulamis, AD en
dc.contributor.author Ntalianis, KS en
dc.contributor.author Doulamis, ND en
dc.contributor.author Kollias, SD en
dc.date.accessioned 2014-03-01T01:16:05Z
dc.date.available 2014-03-01T01:16:05Z
dc.date.issued 2001 en
dc.identifier.issn 0302-9743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/13915
dc.subject Adaptive Neural Network en
dc.subject Convex Function en
dc.subject Linear Constraint en
dc.subject Object Extraction en
dc.subject Video Object Segmentation en
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.other IMAGES en
dc.title Adaptable neural networks for unsupervised video object segmentation of stereoscopic sequences en
heal.type journalArticle en
heal.identifier.primary 10.1007/3-540-44668-0_147 en
heal.identifier.secondary http://dx.doi.org/10.1007/3-540-44668-0_147 en
heal.language English en
heal.publicationDate 2001 en
heal.abstract An adaptive neural network architecture is proposed in this paper, for efficient video object segmentation and tracking in stereoscopic sequences. The scheme includes: (A) A retraining algorithm that optimally adapts the network weights to the cur-rent conditions and simultaneously minimally degrades the previous network knowledge, (B) A semantically meaningful object extraction module for constructing the retraining set of the current conditions and (C) a decision mechanism, which detects the time instances when network retraining is required. The retraining algorithm results in the minimization of a convex function subject to linear constraints. Furthermore description of the current conditions is achieved by appropriate combination of color and depth information. Experimental results on real life video sequences indicate the promising performance of the proposed adaptive neural network-based video object segmentation scheme. en
heal.publisher SPRINGER-VERLAG BERLIN en
heal.journalName ARTIFICIAL NEURAL NETWORKS-ICANN 2001, PROCEEDINGS en
heal.bookName LECTURE NOTES IN COMPUTER SCIENCE en
dc.identifier.doi 10.1007/3-540-44668-0_147 en
dc.identifier.isi ISI:000173024600146 en
dc.identifier.volume 2130 en
dc.identifier.spage 1060 en
dc.identifier.epage 1066 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής