dc.contributor.author |
Ho, L |
en |
dc.contributor.author |
Cavuto, D |
en |
dc.contributor.author |
Papavassiliou, S |
en |
dc.contributor.author |
Zawadzki, A |
en |
dc.date.accessioned |
2014-03-01T01:16:05Z |
|
dc.date.available |
2014-03-01T01:16:05Z |
|
dc.date.issued |
2001 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/13916 |
|
dc.subject |
Anomaly Detection |
en |
dc.title |
Adaptive Anomaly Detection in Transaction-Oriented Networks |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1023/A:1011311024699 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1023/A:1011311024699 |
en |
heal.publicationDate |
2001 |
en |
heal.abstract |
Adaptive algorithms for real-time and proactive detection of network/service anomalies, i.e., soft performance degradations, in transaction-oriented wide area networks (WANs) have been developed. These algorithms (i) adaptively sample and aggregate raw transaction records to compute service-class based traffic intensities, in which potential network anomalies are highlighted; (ii) construct dynamic and service-class based performance thresholds for detecting network and service anomalies; |
en |
heal.journalName |
Journal of Network and Systems Management |
en |
dc.identifier.doi |
10.1023/A:1011311024699 |
en |