dc.contributor.author |
Avrithis, Y |
en |
dc.contributor.author |
Xirouhakis, Y |
en |
dc.contributor.author |
Kollias, S |
en |
dc.date.accessioned |
2014-03-01T01:16:07Z |
|
dc.date.available |
2014-03-01T01:16:07Z |
|
dc.date.issued |
2001 |
en |
dc.identifier.issn |
0932-8092 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/13922 |
|
dc.subject |
Affine invariants |
en |
dc.subject |
Curve normalization |
en |
dc.subject |
Image and video retrieval |
en |
dc.subject |
Shape analysis |
en |
dc.subject.classification |
Computer Science, Artificial Intelligence |
en |
dc.subject.classification |
Computer Science, Cybernetics |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.other |
Discrete Fourier transforms |
en |
dc.subject.other |
Feature extraction |
en |
dc.subject.other |
Image retrieval |
en |
dc.subject.other |
Object recognition |
en |
dc.subject.other |
Curve normalization |
en |
dc.subject.other |
Multimedia systems |
en |
dc.title |
Affine-invariant curve normalization for object shape representation, classification, and retrieval |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/PL00013272 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/PL00013272 |
en |
heal.language |
English |
en |
heal.publicationDate |
2001 |
en |
heal.abstract |
A novel method for two-dimensional curve normalization with respect to affine transformations is presented in this paper, which allows an affine-invariant curve representation to be obtained without any actual loss of information on the original curve. It can be applied as a preprocessing step to any shape representation, classification, recognition, or retrieval technique, since it effectively decouples the problem of affine-invariant description from feature extraction and pattern matching. Curves estimated from object contours are first modeled by cubic B-splines and then normalized in several steps in order to eliminate translation, scaling, skew, starting point, rotation, and reflection transformations, based on a combination of curve features including moments and Fourier descriptors. |
en |
heal.publisher |
SPRINGER-VERLAG |
en |
heal.journalName |
Machine Vision and Applications |
en |
dc.identifier.doi |
10.1007/PL00013272 |
en |
dc.identifier.isi |
ISI:000172501100004 |
en |
dc.identifier.volume |
13 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
80 |
en |
dc.identifier.epage |
94 |
en |