HEAL DSpace

Algebraic and PDE approaches for multiscale image operators with global constraints: Reference semilattice erosions and levelings

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Maragos, P en
dc.date.accessioned 2014-03-01T01:16:07Z
dc.date.available 2014-03-01T01:16:07Z
dc.date.issued 2001 en
dc.identifier.issn 0302-9743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/13923
dc.subject Geometric Feature en
dc.subject Global Constraint en
dc.subject Image Analysis en
dc.subject Large Classes en
dc.subject Local Computation en
dc.subject Morphological Operation en
dc.subject Numerical Solution en
dc.subject Scale Space en
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.other FILTERS en
dc.title Algebraic and PDE approaches for multiscale image operators with global constraints: Reference semilattice erosions and levelings en
heal.type journalArticle en
heal.identifier.primary 10.1007/3-540-47778-0_12 en
heal.identifier.secondary http://dx.doi.org/10.1007/3-540-47778-0_12 en
heal.language English en
heal.publicationDate 2001 en
heal.abstract This paper begins with analyzing the theoretical connections between levelings on lattices and scale-space erosions on reference semilattices. They both represent large classes of self-dual morphological operators that exhibit both local computation and global constraints. Such operators axe useful in numerous image analysis and vision tasks ranging from simplification, to geometric feature detection, to segmentation. Previous definitions and constructions of levelings were either discrete or continuous using a PDE. We bridge this gap by introducing generalized levelings based on triphase operators that switch among three phases, one of which is a global constraint. The triphase operators include as special cases reference semilattice erosions. Algebraically, levelings are created as limits of iterated or multiscale triphase operators. The subclass of multiscale geodesic triphase operators obeys a semigroup, which we exploit to find a PDE that generates geodesic levelings. Further, we develop PDEs that can model and generate continuous-scale semilattice erosions, as a special case of the leveling PDE. We discuss theoretical aspects of these PDEs, propose discrete algorithms for their numerical solution which are proved to converge as iterations of triphase operators, and provide insights via image experiments. en
heal.publisher SPRINGER-VERLAG BERLIN en
heal.journalName SCALE-SPACE AND MORPHOLOGY IN COMPUTER VISION, PROCEEDINGS en
heal.bookName LECTURE NOTES IN COMPUTER SCIENCE en
dc.identifier.doi 10.1007/3-540-47778-0_12 en
dc.identifier.isi ISI:000174659600012 en
dc.identifier.volume 2106 en
dc.identifier.spage 137 en
dc.identifier.epage 148 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής