dc.contributor.author |
Tsinias, J |
en |
dc.contributor.author |
Tzamtzi, MP |
en |
dc.date.accessioned |
2014-03-01T01:16:08Z |
|
dc.date.available |
2014-03-01T01:16:08Z |
|
dc.date.issued |
2001 |
en |
dc.identifier.issn |
0167-6911 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/13936 |
|
dc.subject |
Bounded feedback |
en |
dc.subject |
Feedforward systems |
en |
dc.subject |
Global stabilization |
en |
dc.subject.classification |
Automation & Control Systems |
en |
dc.subject.classification |
Operations Research & Management Science |
en |
dc.subject.other |
Control system analysis |
en |
dc.subject.other |
Linearization |
en |
dc.subject.other |
Nonlinear control systems |
en |
dc.subject.other |
Bounded feedback stabilizers |
en |
dc.subject.other |
Feedback control |
en |
dc.title |
An explicit formula of bounded feedback stabilizers for feedforward systems |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0167-6911(01)00107-4 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0167-6911(01)00107-4 |
en |
heal.language |
English |
en |
heal.publicationDate |
2001 |
en |
heal.abstract |
This work constitutes continuation of a recent result of the same authors, which provides an explicit formula for bounded feedback stabilizers for a wide class of triangular nonlinear systems. In the present paper the previous result is extended for nonlinear systems having feedforward structure and whose linearization at the equilibrium is in general uncontrollable. (C) 2001 Elsevier Science B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Systems and Control Letters |
en |
dc.identifier.doi |
10.1016/S0167-6911(01)00107-4 |
en |
dc.identifier.isi |
ISI:000169909600002 |
en |
dc.identifier.volume |
43 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
247 |
en |
dc.identifier.epage |
261 |
en |