dc.contributor.author |
Brock, LM |
en |
dc.contributor.author |
Georgiadis, HG |
en |
dc.date.accessioned |
2014-03-01T01:16:08Z |
|
dc.date.available |
2014-03-01T01:16:08Z |
|
dc.date.issued |
2001 |
en |
dc.identifier.issn |
0272-4960 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/13937 |
|
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
Boundary conditions |
en |
dc.subject.other |
Deformation |
en |
dc.subject.other |
Eigenvalues and eigenfunctions |
en |
dc.subject.other |
Elasticity |
en |
dc.subject.other |
Friction |
en |
dc.subject.other |
Integral equations |
en |
dc.subject.other |
Poisson ratio |
en |
dc.subject.other |
Speed |
en |
dc.subject.other |
Strain |
en |
dc.subject.other |
Stresses |
en |
dc.subject.other |
Elastic half spaces |
en |
dc.subject.other |
Neo Hookean material |
en |
dc.subject.other |
Rayleigh speed |
en |
dc.subject.other |
Sliding contact |
en |
dc.subject.other |
Boundary value problems |
en |
dc.title |
An illustration of sliding contact at any constant speed on highly elastic half-spaces |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1093/imamat/66.6.551 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1093/imamat/66.6.551 |
en |
heal.language |
English |
en |
heal.publicationDate |
2001 |
en |
heal.abstract |
A rigis smooth indentor slides at a constant speed on a compressible isotropic neo-Hookean half-space that is subjected to pre-stress aligned with the surface and sliding direction. A dynamic steady-sliding situation of plane strain is treated as the superposition of contact-triggered infinitesimal deformations superposed upon finite deformations due to pre-stress. The neo-Hookean material behaves for small strains as a linear elastic solid with Poisson's ratio 1 : 4. Exact solutions are presented for both deformations and, for a range of acceptable pre-stress values, the infinitesimal component exhibits the typical non-isotropy induced by pre-stress, and several critical speeds. In view of the unilateral constraints of contact, these speeds serve to define the sliding speed ranges for which physically acceptable solutions arise. A Rayleigh speed is the upper bound for subsonic sliding, and transonic sliding can occur only at a single speed. For the generic parabolic indentor, contact zone traction continuity is lost at the zone leading edge for trans- and supersonic sliding. For pre-stress levels that fall outside the acceptable range, either a negative Poisson effect occurs, or a Rayleigh speed does not exist and the unilateral constraints cannot be satisfied for any subsonic sliding speed. |
en |
heal.publisher |
OXFORD UNIV PRESS |
en |
heal.journalName |
IMA Journal of Applied Mathematics (Institute of Mathematics and Its Applications) |
en |
dc.identifier.doi |
10.1093/imamat/66.6.551 |
en |
dc.identifier.isi |
ISI:000172628800002 |
en |
dc.identifier.volume |
66 |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.spage |
551 |
en |
dc.identifier.epage |
566 |
en |