HEAL DSpace

An illustration of sliding contact at any constant speed on highly elastic half-spaces

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Brock, LM en
dc.contributor.author Georgiadis, HG en
dc.date.accessioned 2014-03-01T01:16:08Z
dc.date.available 2014-03-01T01:16:08Z
dc.date.issued 2001 en
dc.identifier.issn 0272-4960 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/13937
dc.subject.classification Mathematics, Applied en
dc.subject.other Boundary conditions en
dc.subject.other Deformation en
dc.subject.other Eigenvalues and eigenfunctions en
dc.subject.other Elasticity en
dc.subject.other Friction en
dc.subject.other Integral equations en
dc.subject.other Poisson ratio en
dc.subject.other Speed en
dc.subject.other Strain en
dc.subject.other Stresses en
dc.subject.other Elastic half spaces en
dc.subject.other Neo Hookean material en
dc.subject.other Rayleigh speed en
dc.subject.other Sliding contact en
dc.subject.other Boundary value problems en
dc.title An illustration of sliding contact at any constant speed on highly elastic half-spaces en
heal.type journalArticle en
heal.identifier.primary 10.1093/imamat/66.6.551 en
heal.identifier.secondary http://dx.doi.org/10.1093/imamat/66.6.551 en
heal.language English en
heal.publicationDate 2001 en
heal.abstract A rigis smooth indentor slides at a constant speed on a compressible isotropic neo-Hookean half-space that is subjected to pre-stress aligned with the surface and sliding direction. A dynamic steady-sliding situation of plane strain is treated as the superposition of contact-triggered infinitesimal deformations superposed upon finite deformations due to pre-stress. The neo-Hookean material behaves for small strains as a linear elastic solid with Poisson's ratio 1 : 4. Exact solutions are presented for both deformations and, for a range of acceptable pre-stress values, the infinitesimal component exhibits the typical non-isotropy induced by pre-stress, and several critical speeds. In view of the unilateral constraints of contact, these speeds serve to define the sliding speed ranges for which physically acceptable solutions arise. A Rayleigh speed is the upper bound for subsonic sliding, and transonic sliding can occur only at a single speed. For the generic parabolic indentor, contact zone traction continuity is lost at the zone leading edge for trans- and supersonic sliding. For pre-stress levels that fall outside the acceptable range, either a negative Poisson effect occurs, or a Rayleigh speed does not exist and the unilateral constraints cannot be satisfied for any subsonic sliding speed. en
heal.publisher OXFORD UNIV PRESS en
heal.journalName IMA Journal of Applied Mathematics (Institute of Mathematics and Its Applications) en
dc.identifier.doi 10.1093/imamat/66.6.551 en
dc.identifier.isi ISI:000172628800002 en
dc.identifier.volume 66 en
dc.identifier.issue 6 en
dc.identifier.spage 551 en
dc.identifier.epage 566 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής