HEAL DSpace

An inversion algorithm in two-dimensional elasticity

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Sevroglou, V en
dc.contributor.author Pelekanos, G en
dc.date.accessioned 2014-03-01T01:16:08Z
dc.date.available 2014-03-01T01:16:08Z
dc.date.issued 2001 en
dc.identifier.issn 0022-247X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/13941
dc.subject Circular Cylinder en
dc.subject Integral Equation en
dc.subject Inverse Scattering Problem en
dc.subject Linear Elasticity en
dc.subject Rigid Body en
dc.subject Scattering Amplitude en
dc.subject Interior Point en
dc.subject.classification Mathematics, Applied en
dc.subject.classification Mathematics en
dc.subject.other SCATTERING PROBLEM en
dc.subject.other RESONANCE REGION en
dc.subject.other WAVES en
dc.title An inversion algorithm in two-dimensional elasticity en
heal.type journalArticle en
heal.identifier.primary 10.1006/jmaa.2001.7638 en
heal.identifier.secondary http://dx.doi.org/10.1006/jmaa.2001.7638 en
heal.language English en
heal.publicationDate 2001 en
heal.abstract In this paper scattering problems for the rigid body and the cavity in two-dimensional linear elasticity are considered. In each case the corresponding far-field scattering amplitudes are presented and the Herglotz condition and Herglotz wavefunctions are introduced. A pair of integral equations are constructed in the far-field region. The properties of the Herglotz functions are used to derive solvability conditions and to built approximate far-field equations. A method for solving inverse scattering problems is proposed, and the support of the scattering obstacle is found by noting the unboundedness of the LI-norm of the Herglotz densities as an interior point approaches the boundary of the scattering object from inside the scatterer. Illustration of the unboundedness property on the boundary is carried out for rigid circular cylinders and cavities. Numerical results for rigid bodies are also given, showing the applicability of this method. (C) 2001 Academic Press. en
heal.publisher ACADEMIC PRESS INC en
heal.journalName Journal of Mathematical Analysis and Applications en
dc.identifier.doi 10.1006/jmaa.2001.7638 en
dc.identifier.isi ISI:000172108100018 en
dc.identifier.volume 263 en
dc.identifier.issue 1 en
dc.identifier.spage 277 en
dc.identifier.epage 293 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής