dc.contributor.author |
Lahanas, M |
en |
dc.contributor.author |
Milickovic, N |
en |
dc.contributor.author |
Baltas, D |
en |
dc.contributor.author |
Zamboglou, N |
en |
dc.date.accessioned |
2014-03-01T01:16:09Z |
|
dc.date.available |
2014-03-01T01:16:09Z |
|
dc.date.issued |
2001 |
en |
dc.identifier.issn |
0302-9743 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/13953 |
|
dc.subject |
Aggregation Function |
en |
dc.subject |
Individual Object |
en |
dc.subject |
multiobjective evolutionary algorithm |
en |
dc.subject |
Multiple Objectives |
en |
dc.subject |
Optimal Algorithm |
en |
dc.subject |
Optimal Method |
en |
dc.subject |
Optimization Problem |
en |
dc.subject |
Satisfiability |
en |
dc.subject |
Dose Volume Histogram |
en |
dc.subject |
High Dose Rate |
en |
dc.subject.classification |
Computer Science, Theory & Methods |
en |
dc.subject.other |
GENETIC ALGORITHM |
en |
dc.subject.other |
PROSTATE IMPLANTS |
en |
dc.subject.other |
GENERATION |
en |
dc.title |
Application of multiobjective evolutionary algorithms for dose optimization problems in brachytherapy |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/3-540-44719-9_40 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/3-540-44719-9_40 |
en |
heal.language |
English |
en |
heal.publicationDate |
2001 |
en |
heal.abstract |
In High Dose Rate (HDR) brachytherapy the conventional dose optimization algorithms consider the multiple objectives in form of an aggregate function which combines individual objectives into a single utility value. As a result, the optimization problem becomes single objective, prior to optimization. Up to 300 parameters must be optimized satisfying objectives which are often competing. We use multiobjective dose optimization methods where the objectives are expressed in terms of quantities derived from dose-volume histograms or in terms of statistical parameters of dose distributions from a small number of sampling points. For the last approach we compare the optimization results of evolutionary multiobjective algorithms with deterministic optimization methods. The deterministic algorithms are very efficient and produce the best results. The performance of the multiobjective evolutionary algorithms is improved if a small part of the population is initialized by deterministic algorithms. |
en |
heal.publisher |
SPRINGER-VERLAG BERLIN |
en |
heal.journalName |
EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, PROCEEDINGS |
en |
heal.bookName |
LECTURE NOTES IN COMPUTER SCIENCE |
en |
dc.identifier.doi |
10.1007/3-540-44719-9_40 |
en |
dc.identifier.isi |
ISI:000175042500040 |
en |
dc.identifier.volume |
1993 |
en |
dc.identifier.spage |
574 |
en |
dc.identifier.epage |
587 |
en |