HEAL DSpace

Application of multiobjective evolutionary algorithms for dose optimization problems in brachytherapy

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Lahanas, M en
dc.contributor.author Milickovic, N en
dc.contributor.author Baltas, D en
dc.contributor.author Zamboglou, N en
dc.date.accessioned 2014-03-01T01:16:09Z
dc.date.available 2014-03-01T01:16:09Z
dc.date.issued 2001 en
dc.identifier.issn 0302-9743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/13953
dc.subject Aggregation Function en
dc.subject Individual Object en
dc.subject multiobjective evolutionary algorithm en
dc.subject Multiple Objectives en
dc.subject Optimal Algorithm en
dc.subject Optimal Method en
dc.subject Optimization Problem en
dc.subject Satisfiability en
dc.subject Dose Volume Histogram en
dc.subject High Dose Rate en
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.other GENETIC ALGORITHM en
dc.subject.other PROSTATE IMPLANTS en
dc.subject.other GENERATION en
dc.title Application of multiobjective evolutionary algorithms for dose optimization problems in brachytherapy en
heal.type journalArticle en
heal.identifier.primary 10.1007/3-540-44719-9_40 en
heal.identifier.secondary http://dx.doi.org/10.1007/3-540-44719-9_40 en
heal.language English en
heal.publicationDate 2001 en
heal.abstract In High Dose Rate (HDR) brachytherapy the conventional dose optimization algorithms consider the multiple objectives in form of an aggregate function which combines individual objectives into a single utility value. As a result, the optimization problem becomes single objective, prior to optimization. Up to 300 parameters must be optimized satisfying objectives which are often competing. We use multiobjective dose optimization methods where the objectives are expressed in terms of quantities derived from dose-volume histograms or in terms of statistical parameters of dose distributions from a small number of sampling points. For the last approach we compare the optimization results of evolutionary multiobjective algorithms with deterministic optimization methods. The deterministic algorithms are very efficient and produce the best results. The performance of the multiobjective evolutionary algorithms is improved if a small part of the population is initialized by deterministic algorithms. en
heal.publisher SPRINGER-VERLAG BERLIN en
heal.journalName EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, PROCEEDINGS en
heal.bookName LECTURE NOTES IN COMPUTER SCIENCE en
dc.identifier.doi 10.1007/3-540-44719-9_40 en
dc.identifier.isi ISI:000175042500040 en
dc.identifier.volume 1993 en
dc.identifier.spage 574 en
dc.identifier.epage 587 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής