dc.contributor.author |
Lambropoulos, N |
en |
dc.contributor.author |
Politis, ES |
en |
dc.contributor.author |
Giannakoglou, KC |
en |
dc.contributor.author |
Papailiou, KD |
en |
dc.date.accessioned |
2014-03-01T01:16:13Z |
|
dc.date.available |
2014-03-01T01:16:13Z |
|
dc.date.issued |
2001 |
en |
dc.identifier.issn |
0178-7675 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/13986 |
|
dc.subject |
Finite Volume |
en |
dc.subject |
Interpolation Method |
en |
dc.subject |
Numerical Solution |
en |
dc.subject |
Unstructured Grid |
en |
dc.subject |
navier stokes |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Boundary conditions |
en |
dc.subject.other |
Finite volume method |
en |
dc.subject.other |
Incompressible flow |
en |
dc.subject.other |
Integral equations |
en |
dc.subject.other |
Interpolation |
en |
dc.subject.other |
Laminar flow |
en |
dc.subject.other |
Navier Stokes equations |
en |
dc.subject.other |
Pressure distribution |
en |
dc.subject.other |
Colocated pressure correction |
en |
dc.subject.other |
Pressure weighted interpolation method |
en |
dc.subject.other |
Unstructured grids |
en |
dc.subject.other |
Pressure control |
en |
dc.title |
Co-located pressure-correction formulations on unstructured 2-D grids |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s004660000232 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s004660000232 |
en |
heal.language |
English |
en |
heal.publicationDate |
2001 |
en |
heal.abstract |
By extending a Navier-Stokes solution method for structured grids (SGs), a pressure-correction, finite-volume formulation for the numerical solution of laminar, incompressible, 2-D flows on unstructured grids (UGs) with triangular elements has been deviced. Since a co-located storage arrangement for all of the flow variables is used, the velocity and pressure fields should be artificially coupled. This is achieved through the careful extension of the Pressure-Weighted Interpolation Method (PWIM), successfully used for SGs in the past. In the first part of the paper, the method formulation for UGs is analyzed. Then, the PWIM for UGs and the boundary conditions' implementation along solid walls are investigated, on the basis of two flow problems. |
en |
heal.publisher |
SPRINGER-VERLAG |
en |
heal.journalName |
Computational Mechanics |
en |
dc.identifier.doi |
10.1007/s004660000232 |
en |
dc.identifier.isi |
ISI:000168065700009 |
en |
dc.identifier.volume |
27 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
258 |
en |
dc.identifier.epage |
264 |
en |