HEAL DSpace

Comparative second-law analysis of internal combustion enginge operation for methane, methanol, and dodecane fuels

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Rakopoulos, CD en
dc.contributor.author Kyritsis, DC en
dc.date.accessioned 2014-03-01T01:16:14Z
dc.date.available 2014-03-01T01:16:14Z
dc.date.issued 2001 en
dc.identifier.issn 0360-5442 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/13989
dc.subject Chemical Equilibrium en
dc.subject Entropy Generation en
dc.subject Entropy Production en
dc.subject High Speed en
dc.subject Internal Combustion Engine en
dc.subject Methane en
dc.subject Reaction Rate en
dc.subject Second Law en
dc.subject.classification Thermodynamics en
dc.subject.classification Energy & Fuels en
dc.subject.other Combustion en
dc.subject.other Entropy en
dc.subject.other Fuels en
dc.subject.other Methane en
dc.subject.other Methanol en
dc.subject.other Paraffins en
dc.subject.other Dodecane en
dc.subject.other Second law analysis en
dc.subject.other Internal combustion engines en
dc.subject.other internal combustion engine en
dc.title Comparative second-law analysis of internal combustion enginge operation for methane, methanol, and dodecane fuels en
heal.type journalArticle en
heal.identifier.primary 10.1016/S0360-5442(01)00027-5 en
heal.identifier.secondary http://dx.doi.org/10.1016/S0360-5442(01)00027-5 en
heal.language English en
heal.publicationDate 2001 en
heal.abstract A method for both combustion irreversibility and working medium availability computations in a highspeed, naturally-aspirated, four-stroke, internal combustion engine cylinder is presented. The results of the second-law analysis of engine operation with n-dodecane (n-C12H26) fuel are compared with the results of a similar analysis for cases where a light, gaseous (CH4) and an oxygenated (CH3OH) fuel is used. The rate of entropy production during combustion is analytically calculated as a function of the fuel reaction rate with the combined use of first- and second-law arguments and a chemical equilibrium hypothesis. It is shown theoretically that the decomposition of lighter molecules leads to less entropy generation compared to heavier fuels. This is verified computationally for the particular fuels and the corresponding decrease in combustion irreversibility is calculated. Special reference is made to the effect of the lower mixing entropy of the exhaust gas of an oxygenated fuel (CH3OH) as a contribution to the discussion of the advantages and disadvantages of the use of such fuels. (C) 2001 Elsevier Science Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName Energy en
dc.identifier.doi 10.1016/S0360-5442(01)00027-5 en
dc.identifier.isi ISI:000169881700005 en
dc.identifier.volume 26 en
dc.identifier.issue 7 en
dc.identifier.spage 705 en
dc.identifier.epage 722 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής