HEAL DSpace

Comparison of evolutionary and deterministic multiobjective algorithms for dose optimization in brachytherapy

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Milickovic, N en
dc.contributor.author Lahanas, M en
dc.contributor.author Baltas, D en
dc.contributor.author Zamboglou, N en
dc.date.accessioned 2014-03-01T01:16:14Z
dc.date.available 2014-03-01T01:16:14Z
dc.date.issued 2001 en
dc.identifier.issn 0302-9743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/13990
dc.subject Evolutionary Algorithm en
dc.subject multiobjective evolutionary algorithm en
dc.subject Optimal Method en
dc.subject Optimization Problem en
dc.subject pareto front en
dc.subject pareto optimality en
dc.subject Search Method en
dc.subject Search Space en
dc.subject High Dose Rate en
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.other GENETIC ALGORITHM en
dc.subject.other PROSTATE IMPLANTS en
dc.title Comparison of evolutionary and deterministic multiobjective algorithms for dose optimization in brachytherapy en
heal.type journalArticle en
heal.identifier.primary 10.1007/3-540-44719-9_12 en
heal.identifier.secondary http://dx.doi.org/10.1007/3-540-44719-9_12 en
heal.language English en
heal.publicationDate 2001 en
heal.abstract We compare two multiobjective evolutionary algorithms, with deterministic gradient based optimization methods for the dose optimization problem in high-dose rate (HDR) brachytherapy. The optimization considers up to 300 parameters. The objectives are expressed in terms of statistical parameters, from dose distributions. These parameters are approximated from dose values from a small number of points. For these objectives it is known that the deterministic algorithms converge to the global Pareto front. The evolutionary algorithms produce only local Pareto-optimal fronts. The performance of the multiobjective evolutionary algorithms is improved if a small part of the population is initialized with solutions from deterministic algorithms. An explanation is that only a very small part of the search space is close to the global Pareto front. We estimate the performance of the algorithms in some cases in terms of probability compared to a random optimum search method. en
heal.publisher SPRINGER-VERLAG BERLIN en
heal.journalName EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, PROCEEDINGS en
heal.bookName LECTURE NOTES IN COMPUTER SCIENCE en
dc.identifier.doi 10.1007/3-540-44719-9_12 en
dc.identifier.isi ISI:000175042500012 en
dc.identifier.volume 1993 en
dc.identifier.spage 167 en
dc.identifier.epage 180 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής