HEAL DSpace

Composing cardinal direction relations

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Skiadopoulos, S en
dc.contributor.author Koubarakis, M en
dc.date.accessioned 2014-03-01T01:16:14Z
dc.date.available 2014-03-01T01:16:14Z
dc.date.issued 2001 en
dc.identifier.issn 0302-9743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/13993
dc.subject Base Composition en
dc.subject Binary Relation en
dc.subject Composition Operator en
dc.subject Qualitative Spatial Reasoning en
dc.subject Theoretical Framework en
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.other DATABASES en
dc.title Composing cardinal direction relations en
heal.type journalArticle en
heal.identifier.primary 10.1007/3-540-47724-1_16 en
heal.identifier.secondary http://dx.doi.org/10.1007/3-540-47724-1_16 en
heal.language English en
heal.publicationDate 2001 en
heal.abstract We study the recent proposal of Goyal and Egenhofer who presented a model for qualitative spatial reasoning about cardinal directions. Our approach is formal and complements the presentation of Goyal and Egenhofer. We focus our efforts on the operation of composition for two cardinal direction relations. We point out that the only published method to compute the composition does not always work correctly. Then we consider progressively more expressive classes of cardinal direction relations and give composition algorithms for these classes. Our theoretical framework allows us to prove formally that our algorithms are correct. Finally, we demonstrate that in some cases, the binary relation resulting from the composition of two cardinal direction relations cannot be expressed using the relations defined by Goyal and Egenhofer. en
heal.publisher SPRINGER-VERLAG BERLIN en
heal.journalName ADVANCES IN SPATIAL AND TEMPORAL DATABASES, PROCEEDINGS en
heal.bookName LECTURE NOTES IN COMPUTER SCIENCE en
dc.identifier.doi 10.1007/3-540-47724-1_16 en
dc.identifier.isi ISI:000174747800016 en
dc.identifier.volume 2121 en
dc.identifier.spage 299 en
dc.identifier.epage 317 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής