HEAL DSpace

Computational intelligence techniques for short-term electric load forecasting

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tzafestas, S en
dc.contributor.author Tzafestas, E en
dc.date.accessioned 2014-03-01T01:16:14Z
dc.date.available 2014-03-01T01:16:14Z
dc.date.issued 2001 en
dc.identifier.issn 0921-0296 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/13995
dc.subject Chaos en
dc.subject Computational intelligence en
dc.subject Fuzzy logic en
dc.subject Genetic algorithms en
dc.subject Neural networks en
dc.subject Short-term load forecasting en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.classification Robotics en
dc.subject.other Chaos theory en
dc.subject.other Electric load forecasting en
dc.subject.other Electric power plants en
dc.subject.other Fuzzy sets en
dc.subject.other Genetic algorithms en
dc.subject.other Neural networks en
dc.subject.other Knowledge based forecasting en
dc.subject.other Model based forecasting en
dc.subject.other Short term electric load forecasting en
dc.subject.other Artificial intelligence en
dc.title Computational intelligence techniques for short-term electric load forecasting en
heal.type journalArticle en
heal.identifier.primary 10.1023/A:1012402930055 en
heal.identifier.secondary http://dx.doi.org/10.1023/A:1012402930055 en
heal.language English en
heal.publicationDate 2001 en
heal.abstract Electric load forecasting has received an increasing attention over the years by academic and industrial researchers and practitioners due to its major role for the effective and economic operation of power utilities. The aim of this paper is to provide a collective unified survey study on the application of computational intelligence (CI) model-free techniques to the short-term load forecasting of electric power plants. All four classes of CI methodologies, namely neural networks (NNs), fuzzy logic (FL), genetic algorithms (GAs) and chaos are addressed. The paper starts with some background material on model-based and knowledge-based forecasting methodologies revealing a number of key issues. Then, the pure NN-based and FL-based forecasting methodologies are presented in some detail. Next, the hybrid neurofuzzy forecasting methodology (ANFIS, GARIC and Fuzzy ART variations), and three other hybrid CI methodologies (KB-NN, Chaos-FL, Neurofuzzy-GA) are reviewed. The paper ends with eight representative case studies, which show the relative merits and performance that can be achieved by the various forecasting methodologies under a large repertory of geographic, weather and other peculiar conditions. An overall evaluation of the state-of-art of the field is provided in the conclusions. en
heal.publisher KLUWER ACADEMIC PUBL en
heal.journalName Journal of Intelligent and Robotic Systems: Theory and Applications en
dc.identifier.doi 10.1023/A:1012402930055 en
dc.identifier.isi ISI:000171806500002 en
dc.identifier.volume 31 en
dc.identifier.issue 1-3 en
dc.identifier.spage 7 en
dc.identifier.epage 68 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής