dc.contributor.author |
Papageorgiou, G |
en |
dc.contributor.author |
Famelis, ITh |
en |
dc.date.accessioned |
2014-03-01T01:16:14Z |
|
dc.date.available |
2014-03-01T01:16:14Z |
|
dc.date.issued |
2001 |
en |
dc.identifier.issn |
0898-1221 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/13996 |
|
dc.subject |
Continuous extensions |
en |
dc.subject |
Explicit Runge-Kutta-Nyström |
en |
dc.subject |
Phase-lag |
en |
dc.subject |
Scaling |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Initial value problems |
en |
dc.subject.other |
Oscillations |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Continuous extensions |
en |
dc.subject.other |
Runge Kutta methods |
en |
dc.title |
Continuous Runge-Kutta-Nyström methods for initial value problems with periodic solutions |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0898-1221(01)00230-9 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0898-1221(01)00230-9 |
en |
heal.language |
English |
en |
heal.publicationDate |
2001 |
en |
heal.abstract |
In the present work, we are concerned with the derivation of continuous Runge-Kutta-Nystrom methods for the numerical treatment of second-order ordinary differential equations with periodic solutions. Numerical methods used for solving such problems are better to have the characteristic of high phase-lag order. First we analyse the construction algorithm for a high phase-lag order scaled extension of an explicit Runge-Kutta-Nystrom method. Using this procedure, we manage to construct a phase-lag order 14 continuous extension of a popular nine stages 8(6) order ERKN pair. In the literature, only phase-lag order 12 continuous extension of nine stages 8(6) ERKN pairs can be found, so the proposed scaling method has the higher, until now, dispersion order. Numerical tests for the proposed methods are done over various test problems. (C) 2001 Elsevier Science Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Computers and Mathematics with Applications |
en |
dc.identifier.doi |
10.1016/S0898-1221(01)00230-9 |
en |
dc.identifier.isi |
ISI:000170803800014 |
en |
dc.identifier.volume |
42 |
en |
dc.identifier.issue |
8-9 |
en |
dc.identifier.spage |
1165 |
en |
dc.identifier.epage |
1176 |
en |