dc.contributor.author |
Tsitouras, Ch |
en |
dc.date.accessioned |
2014-03-01T01:16:25Z |
|
dc.date.available |
2014-03-01T01:16:25Z |
|
dc.date.issued |
2001 |
en |
dc.identifier.issn |
0096-3003 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14042 |
|
dc.subject |
Dissipation |
en |
dc.subject |
Eighth algebraic order |
en |
dc.subject |
Explicit methods for periodic ODEs |
en |
dc.subject |
Phase lag |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
INITIAL-VALUE-PROBLEMS |
en |
dc.subject.other |
NOUMEROV-TYPE METHOD |
en |
dc.subject.other |
NUMERICAL-INTEGRATION |
en |
dc.subject.other |
EXPLICIT |
en |
dc.title |
Dissipative high phase-lag order methods |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0096-3003(99)00152-6 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0096-3003(99)00152-6 |
en |
heal.language |
English |
en |
heal.publicationDate |
2001 |
en |
heal.abstract |
New explicit hybrid Numerov type methods are presented in this paper. They share eighth algebraic order while their phase-lag order varies between 18 and 22. Their main characteristic is that they are dissipative so they possess an empty interval of periodicity. Numerical illustrations indicate that this choice was successful since the new methods outperforms the older ones which were scheduled to integrate effectively periodic problems. (C) 2001 Elsevier Science Inc. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE INC |
en |
heal.journalName |
Applied Mathematics and Computation |
en |
dc.identifier.doi |
10.1016/S0096-3003(99)00152-6 |
en |
dc.identifier.isi |
ISI:000166128600004 |
en |
dc.identifier.volume |
117 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
35 |
en |
dc.identifier.epage |
43 |
en |