dc.contributor.author |
Liakos, HH |
en |
dc.contributor.author |
Founti, MA |
en |
dc.contributor.author |
Markatos, NC |
en |
dc.date.accessioned |
2014-03-01T01:16:27Z |
|
dc.date.available |
2014-03-01T01:16:27Z |
|
dc.date.issued |
2001 |
en |
dc.identifier.issn |
0363907X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14058 |
|
dc.subject |
Heat transfer coefficient |
en |
dc.subject |
Hydrodynamics |
en |
dc.subject |
Primary air velocity |
en |
dc.subject |
Riser column |
en |
dc.subject |
Suspension density |
en |
dc.subject.other |
Distillation columns |
en |
dc.subject.other |
Fluidized beds |
en |
dc.subject.other |
Heat transfer coefficients |
en |
dc.subject.other |
Hydrodynamics |
en |
dc.subject.other |
Suspensions (fluids) |
en |
dc.subject.other |
Circulating fluidized riser column |
en |
dc.subject.other |
Heat transfer |
en |
dc.subject.other |
density |
en |
dc.subject.other |
fluidized bed |
en |
dc.subject.other |
heat transfer |
en |
dc.subject.other |
hydrodynamics |
en |
dc.subject.other |
riser |
en |
dc.subject.other |
suspension |
en |
dc.title |
Effect of riser exit geometry on bed hydrodynamics and heat transfer in a circulating fluidized bed riser column |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1002/1099-114X(200101)25:1<1::AID-ER659>3.0.CO;2-B |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1002/1099-114X(200101)25:1<1::AID-ER659>3.0.CO;2-B |
en |
heal.publicationDate |
2001 |
en |
heal.abstract |
This paper reports the variation of suspension density along the riser column and the effect of riser exit geometry on bed hydrodynamics and heat transfer in the upper region of a circulating fluidized (CFB) riser column. The experiments are conducted in a CFB riser column which is 102 mm x 102 mm in bed cross-section (square), 5.25 m height, with a return leg of the same dimension. The unit is made up of interchangeable plexiglass columns. The superficial primary air velocity is varied between 4.2 and 6.4 m/s. The suspension density profile along the riser height is influenced by the exit geometry. With a 90° riser exit geometry, the suspension density profile in the upper region of the CFB riser column increases towards the riser exit. This particular trend has beeb observed for about 2 m length in the top region of the riser. The change in suspension density profile in the top region influences the variation of heat transfer coefficient. With a 90° riser exit geometry, the suspension density increases towards the riser exit, which in turn increases the heat transfer coefficient. The effect of riser exit geomentry on hydrodynamics and heat transfer is significant for about 2 m length in the upper region of the riser column. Copyright © 2001 John Wiley & Son Ltd. |
en |
heal.journalName |
International Journal of Energy Research |
en |
dc.identifier.doi |
10.1002/1099-114X(200101)25:1<1::AID-ER659>3.0.CO;2-B |
en |
dc.identifier.volume |
25 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
1 |
en |
dc.identifier.epage |
8 |
en |