HEAL DSpace

Effect of surface tension and evaporation on phase change of fuel droplets

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kakatsios, XK en
dc.contributor.author Krikkis, RN en
dc.date.accessioned 2014-03-01T01:16:27Z
dc.date.available 2014-03-01T01:16:27Z
dc.date.issued 2001 en
dc.identifier.issn 0145-7632 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/14060
dc.subject Phase Change en
dc.subject Surface Tension en
dc.subject.classification Thermodynamics en
dc.subject.classification Engineering, Mechanical en
dc.subject.classification Mechanics en
dc.subject.other Algorithms en
dc.subject.other Combustors en
dc.subject.other Evaporation en
dc.subject.other Gas turbines en
dc.subject.other Heat transfer en
dc.subject.other Mass transfer en
dc.subject.other Ordinary differential equations en
dc.subject.other Runge Kutta methods en
dc.subject.other Surface tension en
dc.subject.other Thermal expansion en
dc.subject.other Vapor pressure en
dc.subject.other Droplet momentum en
dc.subject.other Fuel droplets en
dc.subject.other Phase-change process en
dc.subject.other Drop formation en
dc.title Effect of surface tension and evaporation on phase change of fuel droplets en
heal.type journalArticle en
heal.identifier.primary 10.1080/014576301300092568 en
heal.identifier.secondary http://dx.doi.org/10.1080/014576301300092568 en
heal.language English en
heal.publicationDate 2001 en
heal.abstract A model is developed which describes the phase-change process (evaporation) of fuel droplets in a gas turbine engine combustor: To develop this model we have employed the conservation laws (droplet momentum, heat and mass transfer). Specifically, we used Newton's second la,v of motion in conjunction with the thermal expansion of the droplet. In this study the droplet density is considered to be a function of temperature, rho (p) = rho (p)(T-p). As a consequence, the thermal expanisvity alpha = -rho (-1)(p)(d rho (p)/dT(p)) is introduced, which has a significant effect on the evaporation process. Furthermore, the conditions on the droplet's surface are determined by taking into account the effect of surface tension on the fuel vapor pressure. The droplet characteristics such as position, velocity, temperature, and diameter are described by a system of sir ordinary differential equations. which are solved numerically using a variable step Runge-Kutta algorithm of order 5(4). Due to the above conditions, our results differ from those reported in the literature [1-5]. en
heal.publisher HEMISPHERE PUBL CORP en
heal.journalName Heat Transfer Engineering en
dc.identifier.doi 10.1080/014576301300092568 en
dc.identifier.isi ISI:000168395200006 en
dc.identifier.volume 22 en
dc.identifier.issue 3 en
dc.identifier.spage 33 en
dc.identifier.epage 40 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής