dc.contributor.author |
Papathanasiou, AG |
en |
dc.contributor.author |
Boudouvis, AG |
en |
dc.contributor.author |
Markatos, NC |
en |
dc.date.accessioned |
2014-03-01T01:16:34Z |
|
dc.date.available |
2014-03-01T01:16:34Z |
|
dc.date.issued |
2001 |
en |
dc.identifier.issn |
0178-7675 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14082 |
|
dc.subject |
Case Study |
en |
dc.subject |
Eigenvectors |
en |
dc.subject |
Energy Function |
en |
dc.subject |
External Field |
en |
dc.subject |
Finite Element Method |
en |
dc.subject |
Free Boundary Problem |
en |
dc.subject |
Magnetic Field |
en |
dc.subject |
Newton Iteration |
en |
dc.subject |
Turning Point |
en |
dc.subject |
Variational Formulation |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Bifurcation (mathematics) |
en |
dc.subject.other |
Boundary value problems |
en |
dc.subject.other |
Eigenvalues and eigenfunctions |
en |
dc.subject.other |
Electric fields |
en |
dc.subject.other |
Finite element method |
en |
dc.subject.other |
Iterative methods |
en |
dc.subject.other |
Magnetic fields |
en |
dc.subject.other |
Magnetic fluids |
en |
dc.subject.other |
Phase equilibria |
en |
dc.subject.other |
Polarization |
en |
dc.subject.other |
Stability |
en |
dc.subject.other |
Variational techniques |
en |
dc.subject.other |
Ferromagnetic liquid drop |
en |
dc.subject.other |
Newton iteration |
en |
dc.subject.other |
Polarizable fluids |
en |
dc.subject.other |
Interfaces (materials) |
en |
dc.title |
Equilibrium and stability of interfaces between polarizable fluids: Theory and computations |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s004660000231 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s004660000231 |
en |
heal.language |
English |
en |
heal.publicationDate |
2001 |
en |
heal.abstract |
A variational formulation is presented of the equilibrium and stability of interfaces between polarizable fluids in the presence of external fields. Equilibrium and stability demand minimization of an appropriate energy functional. The necessary conditions for the minimization give rise to a nonlinear and free boundary problem which is discretized and solved for the field in the fluids and the interface shape with the finite element method and Newton iteration. The sufficient conditions boil down to a generalized eigenproblem, which needs to be solved for the eigenvalues of smallest magnitude and the corresponding eigenvectors. The case studied is a rotating ferromagnetic liquid drop in an external magnetic field. Axisymmetric solutions are computed at different values of the rotational speed. They lose stability to axisymmetric disturbances at turning points and they exchange stability with non-axisymmetric solutions at bifurcation points. |
en |
heal.publisher |
SPRINGER-VERLAG |
en |
heal.journalName |
Computational Mechanics |
en |
dc.identifier.doi |
10.1007/s004660000231 |
en |
dc.identifier.isi |
ISI:000168065700008 |
en |
dc.identifier.volume |
27 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
253 |
en |
dc.identifier.epage |
257 |
en |