HEAL DSpace

Equilibrium and stability of interfaces between polarizable fluids: Theory and computations

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Papathanasiou, AG en
dc.contributor.author Boudouvis, AG en
dc.contributor.author Markatos, NC en
dc.date.accessioned 2014-03-01T01:16:34Z
dc.date.available 2014-03-01T01:16:34Z
dc.date.issued 2001 en
dc.identifier.issn 0178-7675 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/14082
dc.subject Case Study en
dc.subject Eigenvectors en
dc.subject Energy Function en
dc.subject External Field en
dc.subject Finite Element Method en
dc.subject Free Boundary Problem en
dc.subject Magnetic Field en
dc.subject Newton Iteration en
dc.subject Turning Point en
dc.subject Variational Formulation en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.classification Mechanics en
dc.subject.other Bifurcation (mathematics) en
dc.subject.other Boundary value problems en
dc.subject.other Eigenvalues and eigenfunctions en
dc.subject.other Electric fields en
dc.subject.other Finite element method en
dc.subject.other Iterative methods en
dc.subject.other Magnetic fields en
dc.subject.other Magnetic fluids en
dc.subject.other Phase equilibria en
dc.subject.other Polarization en
dc.subject.other Stability en
dc.subject.other Variational techniques en
dc.subject.other Ferromagnetic liquid drop en
dc.subject.other Newton iteration en
dc.subject.other Polarizable fluids en
dc.subject.other Interfaces (materials) en
dc.title Equilibrium and stability of interfaces between polarizable fluids: Theory and computations en
heal.type journalArticle en
heal.identifier.primary 10.1007/s004660000231 en
heal.identifier.secondary http://dx.doi.org/10.1007/s004660000231 en
heal.language English en
heal.publicationDate 2001 en
heal.abstract A variational formulation is presented of the equilibrium and stability of interfaces between polarizable fluids in the presence of external fields. Equilibrium and stability demand minimization of an appropriate energy functional. The necessary conditions for the minimization give rise to a nonlinear and free boundary problem which is discretized and solved for the field in the fluids and the interface shape with the finite element method and Newton iteration. The sufficient conditions boil down to a generalized eigenproblem, which needs to be solved for the eigenvalues of smallest magnitude and the corresponding eigenvectors. The case studied is a rotating ferromagnetic liquid drop in an external magnetic field. Axisymmetric solutions are computed at different values of the rotational speed. They lose stability to axisymmetric disturbances at turning points and they exchange stability with non-axisymmetric solutions at bifurcation points. en
heal.publisher SPRINGER-VERLAG en
heal.journalName Computational Mechanics en
dc.identifier.doi 10.1007/s004660000231 en
dc.identifier.isi ISI:000168065700008 en
dc.identifier.volume 27 en
dc.identifier.issue 3 en
dc.identifier.spage 253 en
dc.identifier.epage 257 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής