dc.contributor.author |
Pasipoularides, P |
en |
dc.date.accessioned |
2014-03-01T01:16:35Z |
|
dc.date.available |
2014-03-01T01:16:35Z |
|
dc.date.issued |
2001 |
en |
dc.identifier.issn |
0556-2821 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14098 |
|
dc.subject |
Effective Action |
en |
dc.subject |
Magnetic Field |
en |
dc.subject |
Metastable State |
en |
dc.subject |
Landau Level |
en |
dc.subject.classification |
Astronomy & Astrophysics |
en |
dc.subject.classification |
Physics, Particles & Fields |
en |
dc.subject.other |
analytic method |
en |
dc.subject.other |
article |
en |
dc.subject.other |
Fourier transformation |
en |
dc.subject.other |
magnetic field |
en |
dc.subject.other |
molecular dynamics |
en |
dc.subject.other |
phase separation |
en |
dc.subject.other |
quantum theory |
en |
dc.title |
Fermion-induced effective action in the presence of a static inhomogeneous magnetic field |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1103/PhysRevD.64.105011 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1103/PhysRevD.64.105011 |
en |
heal.identifier.secondary |
105011 |
en |
heal.language |
English |
en |
heal.publicationDate |
2001 |
en |
heal.abstract |
We present a numerical study of the fermion-induced effective action in the presence of a static inhomogeneous magnetic field for both (3+1)- and (2+1)-dimensional QED using a novel approach. This approach is appropriate for cylindrically symmetric magnetic fields with a finite magnetic flux Φ. We consider families of magnetic fields, dependent on two parameters: a typical value Bm for the field and a typical range d. We investigate the behavior of the effective action for three distinct cases: (1) keeping Φ (or Bmd2) constant and varying d, (2) keeping Bm constant and varying d, and (3) keeping d constant and varying Φ (or Bmd2). We note an interesting difference in the limit d→+∞ (case 2) between smooth and discontinuous magnetic fields. In the strong field limit (case 3) we also derive an explicit asymptotic formula for the (3+1)-dimensional action. We study the stability of the magnetic field and show that magnetic fields of the type we examine remain unstable, even in the presence of fermions. In the appropriate regions we check our numerical results against the Schwinger formula (constant magnetic field), the derivative expansion, and the numerical work of Bordag and Kirsten. The role of the Landau levels in the effective action and the appearance of metastable states for a large magnetic flux are discussed in the Appendixes. ©2001 The American Physical Society. |
en |
heal.publisher |
AMERICAN PHYSICAL SOC |
en |
heal.journalName |
Physical Review D |
en |
dc.identifier.doi |
10.1103/PhysRevD.64.105011 |
en |
dc.identifier.isi |
ISI:000172074100044 |
en |
dc.identifier.volume |
64 |
en |
dc.identifier.issue |
10 |
en |